1
|
Tan VJ, Liang Y, Tan AS, Wong S, Asherah N, Chua P, Lee CG, Choolani MA, Dang T, Chong SS. A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions. Int J Mol Sci 2025; 26:4532. [PMID: 40429681 DOI: 10.3390/ijms26104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Combined preimplantation genetic testing of aneuploidy (PGT-A) and monogenic disease (PGT-M) can be achieved through PCR-based whole genome amplification (WGA) and next-generation sequencing (NGS). However, pathogenic variant detection is usually achieved indirectly through single nucleotide polymorphism haplotyping, as direct detection of pathogenic variants is not always possible. We evaluated whether isothermal WGA was suitable for combined PGT-A and PGT-M that also permitted direct detection of repeat expansions and large deletions, in addition to indirect linkage analysis using microsatellite markers. Five-cell replicates from selected cell lines were subjected to isothermal or PCR-based WGA, followed by NGS-based PGT-A and direct and indirect PGT-M of Huntington's disease and spinal muscular atrophy. Both WGA methods accurately detected aneuploidy and large (10 Mb) segmental imbalances. However, isothermal WGA produced higher genotyping accuracy compared with PCR-based WGA for all analysed microsatellite markers (93.5% vs. 75.6%), as well as at the HTT CAG repeat locus (100% vs. 7.7%) and the SMN1/2 locus (100% vs. 71.8%). These results demonstrate that isothermal WGA is potentially ideal for combined PGT-A and PGT-M that permits both direct and indirect detection of pathogenic variants including repeat expansions and gene deletions.
Collapse
Affiliation(s)
- Vivienne J Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Ying Liang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
- Reproductive Medical Center, Shijiazhuang Obstetrics and Gynaecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang 050011, China
| | - Arnold S Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Simin Wong
- Preimplantation Genetic Diagnosis Centre, Department of Obstetrics and Gynaecology, National University Hospital, Singapore 119074, Singapore
| | - Nur Asherah
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Pengyian Chua
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore 119074, Singapore
| | - Truong Dang
- Department of Anatomy, Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Samuel S Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 12, 1E Kent Ridge Road, Singapore 119228, Singapore
- Preimplantation Genetic Diagnosis Centre, Department of Obstetrics and Gynaecology, National University Hospital, Singapore 119074, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| |
Collapse
|
2
|
Liu X, Zhang Q, Cao K, Li J, Gao Y, Xu P, Niu Y, Zhou W, Ni T, Sun S, Yan J. Preimplantation genetic testing for monogenic disorders (PGT-M) for monogenic nephropathy: a single-center retrospective cohort analysis. Clin Kidney J 2025; 18:sfae356. [PMID: 39802589 PMCID: PMC11719030 DOI: 10.1093/ckj/sfae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Hereditary nephropathy is an important cause of renal insufficiency and end-stage renal disease. Therefore, for couples with monogenic nephropathy, preventing transmission of the disease to offspring is urgent. Preimplantation genetic testing for monogenic disorders (PGT-M) is a means to prevent intergenerational inheritance by screening and transplanting normal embryos. We provide a clinical overview of patients with monogenic nephropathy who underwent PGT-M. Methods The single-center retrospective cohort study was conducted at the Center for Reproductive Medicine, Shandong University from January 2014 to December 2022. A total of 352 couples with nephropathy-related disease were included in the cohort totally. Results Of the 352 couples with nephropathy-related disease, 180 accepted genetic screening. A total of 104 couples with monogenic nephropathy indications underwent PGT-M, including 90 of autosomal dominant inheritance, 10 of autosomal recessive inheritance, 4 of X-linked inheritance. 498 blastocysts were biopsied prior to testing, and 394 embryos underwent genetic testing, of which 76 were transferable, 247 were non-transferable and 71 were recommended for genetic counseling. Finally, 80 vitrified-thawed single blastocyst transfer cycles were performed in the cohort. Live births occurred in 38 women, of which 37 transferred embryos with non-pathogenic genotypes. The invasive prenatal diagnosis results of 18 women with live birth were obtained through follow-up, consistent with the PGT-M results of transferred embryos. Conclusions PGT-M is an effective means of preventing intergenerational inheritance of monogenic nephropathy. The absence of genetic abnormalities detected by prenatal diagnosis in healthy newborns without monogenic nephropathy also underscore its validity.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Kexin Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Peiwen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Yuping Niu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Wei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Tianxiang Ni
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| | - Shuzhen Sun
- Medical Integration and Practice Center, Shandong University, 44 Wenhua West Road, Jinan, Shandong, China
| | - Junhao Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention (Under Construction), Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, China
| |
Collapse
|
3
|
Zou W, Li M, Wang X, Lu H, Hao Y, Chen D, Zhu S, Ji D, Zhang Z, Zhou P, Cao Y. Preimplantation genetic testing for monogenic disorders (PGT-M) offers an alternative strategy to prevent children from being born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes: a retrospective study. J Assist Reprod Genet 2024; 41:1245-1259. [PMID: 38470552 PMCID: PMC11143151 DOI: 10.1007/s10815-024-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Thompson WS, Babayev SN, McGowan ML, Kattah AG, Wick MJ, Bendel-Stenzel EM, Chebib FT, Harris PC, Dahl NK, Torres VE, Hanna C. State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies. J Am Soc Nephrol 2024; 35:235-248. [PMID: 37882743 PMCID: PMC10843344 DOI: 10.1681/asn.0000000000000253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
There is a broad phenotypic spectrum of monogenic polycystic kidney diseases (PKDs). These disorders often involve cilia-related genes and lead to the development of fluid-filled cysts and eventual kidney function decline and failure. Preimplantation genetic testing for monogenic (PGT-M) disorders has moved into the clinical realm. It allows prospective parents to avoid passing on heritable diseases to their children, including monogenic PKD. The PGT-M process involves embryo generation through in vitro fertilization, with subsequent testing of embryos and selective transfer of those that do not harbor the specific disease-causing variant(s). There is a growing body of literature supporting the success of PGT-M for autosomal-dominant and autosomal-recessive PKD, although with important technical limitations in some cases. This technology can be applied to many other types of monogenic PKD and ciliopathies despite the lack of existing reports in the literature. PGT-M for monogenic PKD, like other forms of assisted reproductive technology, raises important ethical questions. When considering PGT-M for kidney diseases, as well as the potential to avoid disease in future generations, there are regulatory and ethical considerations. These include limited government regulation and unstandardized consent processes, potential technical errors, high cost and equity concerns, risks associated with pregnancy for mothers with kidney disease, and the impact on all involved in the process, including the children who were made possible with this technology.
Collapse
Affiliation(s)
- Whitney S. Thompson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Neonatal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samir N. Babayev
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. McGowan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrea G. Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Myra J. Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|