1
|
Kapapa T, Wernheimer V, Hoffmann A, Merz T, Zink F, Wolfschmitt EM, McCook O, Vogt J, Wepler M, Messerer DAC, Hartmann C, Scheuerle A, Mathieu R, Mayer S, Gröger M, Denoix N, Clazia E, Radermacher P, Röhrer S, Datzmann T. Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma. Cells 2024; 14:17. [PMID: 39791718 PMCID: PMC11720468 DOI: 10.3390/cells14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies. Clinical management issues such as whether intracranial pressure (ICP), cerebral perfusion pressure (CPP) or decompressive craniectomy improve patient outcome remain partly unanswered. Experimental drug approaches for the treatment of secondary brain injury (SBI) have not found clinical application. The complex, cellular and molecular pathways of SBI remain incompletely understood, and there are insufficient experimental (animal) models that reflect the pathophysiology of human TBI to develop translational therapeutic approaches. Therefore, we investigated different injury patterns after acute subdural hematoma (ASDH) as TBI in a post-hoc approach to assess the impact on SBI in a long-term, human-sized porcine TBI animal model. Post-mortem brain tissue analysis, after ASDH, bilateral ICP, CPP, cerebral oxygenation and temperature monitoring, and biomarker analysis were performed. Extracerebral, intraparenchymal-extraventricular and intraventricular blood, combined with brainstem and basal ganglia injury, influenced the experiment and its outcome. Basal ganglia injury affects the duration of the experiment. Recognition of these different injury patterns is important for translational interpretation of results in this animal model of SBI after TBI.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Vanida Wernheimer
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tamara Merz
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Fabia Zink
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Josef Vogt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Martin Wepler
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Claire Hartmann
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Angelika Scheuerle
- Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Michael Gröger
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Nicole Denoix
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Enrico Clazia
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Stefan Röhrer
- Department of Neurosurgery, Ostalb-Hospital Aalen, Im Kälblesrain 1, 73430 Aalen, Germany
| | - Thomas Datzmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
2
|
Marichev AO, Radovskiy AM, Osovskikh VV, Kozyrev DA, Chomakhashvili IG, Lomaev AA, Sorokina AK, Chinenkov IA, Vasilchenko OI, Avezov DA, Kalinin MO, Bautin AE. The Effect of Nitric Oxide Supplied to the Sweep Gas of the Oxygenator on the Formation of Gaseous Microemboli during Cardiopulmonary Bypass (Experimental Study). Bull Exp Biol Med 2024; 177:787-791. [PMID: 39443358 DOI: 10.1007/s10517-024-06268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 10/25/2024]
Abstract
The effect of nitric oxide (NO) supplied to the sweep gas of the oxygenator on the formation of gaseous microemboli during cardiopulmonary bypass has been studied in animal experiments (female pigs). It was shown that NO added to the sweep gas of the oxygenator during cardiopulmonary bypass significantly decreased the number and volume of microemboli (the number of microemboli over 1 h of cardiopulmonary bypass was 1197 (568; 2436) vs 55,478 (15,217; 331,480) in the control; p=0.016). The decrease in the number and volume of all bubbles was accompanied by a significant decrease in the concentration of neuron-specific enolase, a marker of brain injury, 6 h after the end of cardiopulmonary bypass to 7.7 (7.5; 8.7) ng/ml vs 11.2 (9.2; 18.3) ng/ml in the group without NO (p=0.047).
Collapse
Affiliation(s)
- A O Marichev
- Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - A M Radovskiy
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - V V Osovskikh
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - D A Kozyrev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - A A Lomaev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A K Sorokina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - I A Chinenkov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - O I Vasilchenko
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - D A Avezov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - M O Kalinin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A E Bautin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
3
|
Wolfschmitt EM, Vogt JA, Hogg M, Wachter U, Stadler N, Kapapa T, Datzmann T, Messerer DAC, Hoffmann A, Gröger M, Münz F, Mathieu R, Mayer S, Merz T, Asfar P, Calzia E, Radermacher P, Zink F. 13C-Metabolic flux analysis detected a hyperoxemia-induced reduction of tricarboxylic acid cycle metabolism in granulocytes during two models of porcine acute subdural hematoma and hemorrhagic shock. Front Immunol 2024; 14:1319986. [PMID: 38332911 PMCID: PMC10850868 DOI: 10.3389/fimmu.2023.1319986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.
Collapse
Affiliation(s)
- Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Josef Albert Vogt
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Nicole Stadler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Thomas Kapapa
- Clinic for Neurosurgery, University Hospital Ulm, Ulm, Germany
| | - Thomas Datzmann
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - René Mathieu
- Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany
| | - Simon Mayer
- Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - Pierre Asfar
- Département de Médecine Intensive – Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Datzmann T, Münz F, Hoffmann A, Moehrke E, Binzenhöfer M, Gröger M, Kapapa T, Mathieu R, Mayer S, Zink F, Gässler H, Wolfschmitt EM, Hogg M, Merz T, Calzia E, Radermacher P, Messerer DAC. An exploratory study investigating the effect of targeted hyperoxemia in a randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma and hemorrhagic shock in cardiovascular healthy pigs. Front Immunol 2023; 14:1123196. [PMID: 37114041 PMCID: PMC10126345 DOI: 10.3389/fimmu.2023.1123196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Severe physical injuries and associated traumatic brain injury and/or hemorrhagic shock (HS) remain leading causes of death worldwide, aggravated by accompanying extensive inflammation. Retrospective clinical data indicated an association between mild hyperoxemia and improved survival and outcome. However, corresponding prospective clinical data, including long-term resuscutation, are scarce. Therefore, the present study explored the effect of mild hyperoxemia for 24 hours in a prospective randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma (ASDH) and HS. ASDH was induced by injecting 0.1 ml × kg-1 autologous blood into the subdural space and HS was triggered by passive removal of blood. After 2 hours, the animals received full resuscitation, including retransfusion of the shed blood and vasopressor support. During the first 24 hours, the animals underwent targeted hyperoxemia (PaO2 = 200 - 250 mmHg) or normoxemia (PaO2 = 80 - 120 mmHg) with a total observation period of 55 hours after the initiation of ASDH and HS. Survival, cardiocirculatory stability, and demand for vasopressor support were comparable between both groups. Likewise, humoral markers of brain injury and systemic inflammation were similar. Multimodal brain monitoring, including microdialysis and partial pressure of O2 in brain tissue, did not show significant differences either, despite a significantly better outcome regarding the modified Glasgow Coma Scale 24 hours after shock that favors hyperoxemia. In summary, the present study reports no deleterious and few beneficial effects of mild targeted hyperoxemia in a clinically relevant model of ASDH and HS with long-term resuscitation in otherwise healthy pigs. Further beneficial effects on neurological function were probably missed due to the high mortality in both experimental groups. The present study remains exploratory due to the unavailability of an a priori power calculation resulting from the lack of necessary data.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Elena Moehrke
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Martha Binzenhöfer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Holger Gässler
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, German Armed Forces Hospital Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Münz F, Wolfschmitt EM, Zink F, Abele N, Hogg M, Hoffmann A, Gröger M, Calzia E, Waller C, Radermacher P, Merz T. Porcine blood cell and brain tissue energy metabolism: Effects of "early life stress". Front Mol Biosci 2023; 10:1113570. [PMID: 37138659 PMCID: PMC10150084 DOI: 10.3389/fmolb.2023.1113570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Early Life Stress (ELS) may exert long-lasting biological effects, e.g., on PBMC energy metabolism and mitochondrial respiration. Data on its effect on brain tissue mitochondrial respiration is scarce, and it is unclear whether blood cell mitochondrial activity mirrors that of brain tissue. This study investigated blood immune cell and brain tissue mitochondrial respiratory activity in a porcine ELS model. Methods: This prospective randomized, controlled, animal investigation comprised 12 German Large White swine of either sex, which were weaned at PND (postnatal day) 28-35 (control) or PND21 (ELS). At 20-24 weeks, animals were anesthetized, mechanically ventilated and surgically instrumented. We determined serum hormone, cytokine, and "brain injury marker" levels, superoxide anion (O2 •¯) formation and mitochondrial respiration in isolated immune cells and immediate post mortem frontal cortex brain tissue. Results: ELS animals presented with higher glucose levels, lower mean arterial pressure. Most determined serum factors did not differ. In male controls, TNFα and IL-10 levels were both higher than in female controls as well as, no matter the gender in ELS animals. MAP-2, GFAP, and NSE were also higher in male controls than in the other three groups. Neither PBMC routine respiration and brain tissue oxidative phosphorylation nor maximal electron transfer capacity in the uncoupled state (ETC) showed any difference between ELS and controls. There was no significant relation between brain tissue and PBMC, ETC, or brain tissue, ETC, and PBMC bioenergetic health index. Whole blood O2 •¯ concentrations and PBMC O2 •¯ production were comparable between groups. However, granulocyte O2 •¯ production after stimulation with E. coli was lower in the ELS group, and this effect was sex-specific: increased O2 •¯ production increased upon stimulation in all control animals, which was abolished in the female ELS swine. Conclusion: This study provides evidence that ELS i) may, gender-specifically, affect the immune response to general anesthesia as well as O2 •¯ radical production at sexual maturity, ii) has limited effects on brain and peripheral blood immune cell mitochondrial respiratory activity, and iii) mitochondrial respiratory activity of peripheral blood immune cells and brain tissue do not correlate.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Tamara Merz,
| |
Collapse
|