1
|
Feng J, Liu L, Liu J, Wang J. Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis. Expert Rev Clin Immunol 2024; 20:1205-1217. [PMID: 38850066 DOI: 10.1080/1744666x.2024.2366301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junya Liu
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
3
|
Khan MAO, Suvvari TK, Harooni SAS, Khan AA, Anees S, Bushra. Assessment of soluble thrombomodulin and soluble endoglin as endothelial dysfunction biomarkers in seriously ill surgical septic patients: correlation with organ dysfunction and disease severity. Eur J Trauma Emerg Surg 2024; 50:897-904. [PMID: 37741913 DOI: 10.1007/s00068-023-02369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sepsis, a complex condition characterized by dysregulated immune response and organ dysfunction, is a leading cause of mortality in ICU patients. Current diagnostic and prognostic approaches primarily rely on non-specific biomarkers and illness severity scores, despite early endothelial activation being a key feature of sepsis. This study aimed to evaluate the levels of soluble thrombomodulin and soluble endoglin in seriously ill surgical septic patients and explore their association with organ dysfunction and disease severity. METHODOLOGY A case control study was conducted from March 2022 to November 2022, involving seriously ill septic surgical patients. Baseline clinical and laboratory data were collected within 24 h of admission to the Surgical Intensive Care Unit. This included information such as age, sex, hemodynamic parameters, blood chemistry, SOFA score, qSOFA score, and APACHE-II score. A proforma was filled out to record these details. The outcome of each patient was noted at the time of discharge. RESULTS The study found significantly elevated levels of soluble thrombomodulin and soluble endoglin in seriously ill surgical septic patients. The RTqPCR analysis revealed a positive correlation between soluble thrombomodulin and soluble endoglin levels with the qSOFA score, as well as, there was a positive association between RTqPCR soluble thrombomodulin and the SOFA score. These findings indicate a correlation between these biomarkers and organ dysfunction and disease severity. CONCLUSION The study concludes that elevated levels of soluble thrombomodulin and soluble endoglin can serve as endothelial biomarkers for early diagnosis and prognostication in seriously ill surgical septic patients.
Collapse
Affiliation(s)
| | - Tarun Kumar Suvvari
- Rangaraya Medical College, Kakinada, India
- Squad Medicine and Research (SMR), Vizag, Andhra Pradesh, India
| | | | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | - Syyeda Anees
- Department of Biochemistry, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | - Bushra
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Rajan R, Hanifah M, Mariappan V, Anand M, Balakrishna Pillai A. Soluble Endoglin and Syndecan-1 levels predicts the clinical outcome in COVID-19 patients. Microb Pathog 2024; 188:106558. [PMID: 38272329 DOI: 10.1016/j.micpath.2024.106558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Endothelial instability is reported to be involved in the pathogenesis of COVID-19. The mechanism that regulates the endothelial dysfunction and disease virulence is not known. Studies on proteins that are released into circulation by activated endothelial cells may provide some means to understand the disease manifestation. The study investigated the circulating levels of two molecules Endoglin (Eng) and Syndecan-1 (SDC-1) that are presumed to be involved in the maintenance of endothelial integrity and their association with hypercoagulation marker in COVID-19 patients. The serum levels of Eng, SDC-1, D-mer were evaluated using ELISA at the time of admission (DOA) and day 7 post-admission among COVID-19 patients (N = 39 with 17 moderate and 22 severe cases). Compared to the time of admission, there was an increase in sEng and sSDC1 levels in all COVID-19 cases on day 7 post admission. The serum levels of sEng and sSDC-1 was significantly (P ≤ 0.001 & P ≤ 0.01 respectively) elevated in severe cases including the four deceased group compared to moderate cases on day 7 post admission. Further, the study molecules showed a strong positive association (P ≤ 0.001) with the hypercoagulation marker D-mer. The results show an early shedding of the endothelial proteins sEng and sSDC-1 into circulation as a host response to the viral infection during the febrile phase of infection. Increased levels of sEng and sSDC-1 along with D-mer could be beneficial in predicting COVID-19 disease severity.
Collapse
Affiliation(s)
- Remya Rajan
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Mohamed Hanifah
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Monica Anand
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| |
Collapse
|
5
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Jiménez-Dinamarca I, Prado Y, Tapia P, Gatica S, Alt C, Lin CP, Reyes-Martínez C, Feijóo CG, Aravena C, González-Canacer A, Correa S, Varela D, Cabello-Verrugio C, Simon F. Disseminated intravascular coagulation phenotype is regulated by the TRPM7 channel during sepsis. Biol Res 2023; 56:8. [PMID: 36869357 PMCID: PMC9983216 DOI: 10.1186/s40659-023-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Collapse
Affiliation(s)
- Ivanka Jiménez-Dinamarca
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristian Reyes-Martínez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Carmen G Feijóo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Alejandra González-Canacer
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Simón Correa
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|