1
|
Shen J, Lai Y, Wu Y, Lin X, Zhang C, Liu H. Ubiquitination in osteosarcoma: unveiling the impact on cell biology and therapeutic strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0231. [PMID: 39475222 PMCID: PMC11523277 DOI: 10.20892/j.issn.2095-3941.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Ubiquitination, a multifaceted post-translational modification, regulates protein function, degradation, and gene expression. The pivotal role of ubiquitination in the pathogenesis and progression of cancer, including colorectal, breast, and liver cancer, is well-established. Osteosarcoma, an aggressive bone tumor predominantly affecting adolescents, also exhibits dysregulation of the ubiquitination system, encompassing both ubiquitination and deubiquitination processes. This dysregulation is now recognized as a key driver of osteosarcoma development, progression, and chemoresistance. This review highlights recent progress in elucidating how ubiquitination modulates tumor behavior across signaling pathways. We then focus on the mechanisms by which ubiquitination influences osteosarcoma cell function. Finally, we discuss the potential for targeting the ubiquitin-proteasome system in osteosarcoma therapy. By unraveling the impact of ubiquitination on osteosarcoma cell physiology, we aim to facilitate the development of novel strategies for prognosis, staging, treatment, and overcoming chemoresistance.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian 351100, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian 351100, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yanjiao Wu
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan 528000, China
| | - Xuan Lin
- Department of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Cheng Zhang
- Department of Trauma Center, Zhongda Hospital, Southeast University, Nanjing 210000, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Hiwasa T, Yoshida Y, Kubota M, Li SY, Zhang BS, Matsutani T, Mine S, Machida T, Ito M, Yajima S, Shirouzu M, Yokoyama S, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Takemoto M, Hayashi A, Yokote K, Kobayashi Y, Matsushita K, Tatsumi K, Takizawa H, Tomiyoshi G, Shimada H, Higuchi Y. Serum anti‑KIAA0513 antibody as a common biomarker for mortal atherosclerotic and cancerous diseases. MEDICINE INTERNATIONAL 2024; 4:45. [PMID: 38983794 PMCID: PMC11228693 DOI: 10.3892/mi.2024.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Numerous antibody biomarkers have been reported for cancer and atherosclerosis-related diseases. The major complications of atherosclerosis and diabetes mellitus (DM) are acute ischemic stroke (AIS), cardiovascular disease (CVD) and chronic kidney disease (CKD). Cancer development is accompanied by arterial disorders, such as angiogenesis and atherosclerosis, and DM is a risk factor for the development of certain types of cancer. Atherosclerosis-related diseases and cancers are therefore interrelated and could be detected using a common biomarker. In the present study, the initial screening using the protein array method identified KIAA0513 as an antigen recognized by serum IgG antibodies in patients with atherosclerosis. The amplified luminescent proximity homogeneous assay-linked immunosorbent assay revealed significantly higher serum antibody levels against recombinant KIAA0513 protein in patients with AIS, transient ischemic attack (TIA), DM, CVD, obstructive sleep apnea syndrome (OSAS), CKD and solid cancers, such as esophageal, gastric, colon, lung and breast cancers, compared with healthy donors. A receiver operating characteristic (ROC) analysis revealed that the highest areas under the ROC curves of anti-KIAA0513 antibodies were obtained for esophageal cancer, nephrosclerosis-type CKD and DM. Spearman's correlation analysis revealed that serum anti-KIAA0513 antibody levels were associated with maximum intima-media thickness and plaque score, which are indices of atherosclerosis and stenosis. Serum anti-KIAA0513 antibody markers appear to be useful for diagnosing AIS, TIA, DM, CVD, OSAS, CKD and solid cancers, and may reflect common arterial alterations leading to atherosclerotic and cancerous diseases.
Collapse
Affiliation(s)
- Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba 287-0003, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba 283-8686, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | | | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba 260-8677, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Go Tomiyoshi
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama 340-0203, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
3
|
Cui J, Wang Q, Li M. Xinnaotongluo liquid protects H9c2 cells from H/R-induced damage by regulating MDM2/STEAP3. PLoS One 2024; 19:e0302407. [PMID: 38640125 PMCID: PMC11029650 DOI: 10.1371/journal.pone.0302407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Xinnaotongluo liquid has been used to improve the clinical symptoms of patients with myocardial infarction. However, the molecular mechanism of Xinnaotongluo liquid is not completely understood. H9c2 cells exposed to hypoxia/reoxygenation (H/R) was used to simulate damage to cardiomyocytes in myocardial infarction in vitro. The biological indicators of H9c2 cells were measured by cell counting kit-8, enzyme linked immunoabsorbent assay, and western blot assay. In H/R-induced H9c2 cells, a markedly reduced murine double minute 2 (MDM2) was observed. However, the addition of Xinnaotongluo liquid increased MDM2 expression in H/R-induced H9c2 cells. And MDM2 overexpression strengthened the beneficial effects of Xinnaotongluo liquid on H9c2 cells from the perspective of alleviating oxidative damage, cellular inflammation, apoptosis and ferroptosis of H/R-induced H9c2 cells. Moreover, MDM2 overexpression reduced the protein expression of p53 and Six-Transmembrane Epithelial Antigen of Prostate 3 (STEAP3). Whereas, STEAP3 overexpression hindered the function of MDM2-overexpression in H/R-induced H9c2 cells. Our results insinuated that Xinnaotongluo liquid could protect H9c2 cells from H/R-induced damage by regulating MDM2/STEAP3, which provide a potential theoretical basis for further explaining the working mechanism of Xinnaotongluo liquid.
Collapse
Affiliation(s)
- Jiankun Cui
- Department of Cardiology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, P. R. China
| | - Qinwen Wang
- Out-Patient Department, Beijing Garrison District Haidian Retired Cadres Twenty-Sixth, Beijing Garrison District Haidian Retired Cadres Twenty-Sixth, Beijing, China
| | - Minghao Li
- Department of Cardiology, Beidahuang Group General Hospital, Harbin, 150088, Heilongjiang, P. R. China
| |
Collapse
|
4
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|