1
|
Jellinger KA. Concomitant Pathologies and Their Impact on Parkinson Disease: A Narrative Overview of Current Evidence. Int J Mol Sci 2025; 26:2942. [PMID: 40243562 PMCID: PMC11988849 DOI: 10.3390/ijms26072942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Many clinico-pathological studies point to the presence of multiple comorbidities/co-pathologies in the course of Parkinson disease (PD). Lewy body pathology, the morphological hallmark of PD, rarely exists in isolation, but is usually associated with other concomitant pathologies, in particular Alzheimer disease-related changes (ADNC), cerebrovascular pathologies (macro- and microinfarcts, cerebral small vessel disease, cerebral amyloid angiopathy), TDP-43 pathology as well as multiple pathological combinations. These include cardiovascular disorders, metabolic syndrome, diabetes mellitus, autoimmune and rheumatic diseases, myasthenia gravis, Sjögren's syndrome, restless leg syndrome or other rare disorders, like Fabry disease. A combination of PD and multiple sclerosis (MS) may be due to the immune function of LRRK2 and its interrelation with α-synuclein. COVID-19 and HIV posed considerable impacts on patients with PD. Epidemiological evidence points to a decreased risk for the majority of neoplasms, except melanoma and other skin cancers, while some tumors (breast, brain) are increased. On the other hand, a lower frequency of malignancies preceding early PD markers may argue for their protective effect on PD risk. Possible pathogenetic factors for the association between PD and cancer are discussed. The tremendous heterogeneity of concomitant pathologies and comorbidities observed across the PD spectrum is most likely caused by the complex interplay between genetic, pathogenic and other risk factors, and further research should provide increasing insight into their relationship with idiopathic PD (and other parkinsonian disorders) in order to find better diagnostic tools and probable disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
2
|
Krueger ME, Boles JS, Simon ZD, Alvarez SD, McFarland NR, Okun MS, Zimmermann EM, Forsmark CE, Tansey MG. Comparative analysis of Parkinson's and inflammatory bowel disease gut microbiomes reveals shared butyrate-producing bacteria depletion. NPJ Parkinsons Dis 2025; 11:50. [PMID: 40108151 PMCID: PMC11923181 DOI: 10.1038/s41531-025-00894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Epidemiological studies reveal that inflammatory bowel disease (IBD) is associated with an increased risk of Parkinson's disease (PD). Gut dysbiosis has been documented in both PD and IBD, however it is currently unknown whether gut dysbiosis underlies the epidemiological association between both diseases. To identify shared and distinct features of the PD and IBD microbiome, we recruited 54 PD, 26 IBD, and 16 healthy control individuals and performed the first joint analysis of gut metagenomes. Larger, publicly available PD and IBD metagenomic datasets were also analyzed to validate and extend our findings. Depletions in short-chain fatty acid (SCFA)-producing bacteria, including Roseburia intestinalis, Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium rectale, as well depletion in SCFA-synthesis pathways were detected across PD and IBD datasets, suggesting that depletion of these microbes in IBD may influence the risk for PD development.
Collapse
Affiliation(s)
- Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zachary D Simon
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stephan D Alvarez
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher E Forsmark
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Park SH, Kang J, Lee JY, Yoon JS, Hwang SH, Lee JY, Gupta DP, Baek IH, Han KJ, Song GJ. Neuroinflammation in Adaptive Immunodeficient Mice with Colitis-like Symptoms. Exp Neurobiol 2025; 34:34-47. [PMID: 40091637 PMCID: PMC11919638 DOI: 10.5607/en24016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Emerging evidence suggests that systemic inflammation may play a critical role in neurological disorders. Recent studies have shown the connection between inflammatory bowel diseases (IBD) and neurological disorders, revealing a bidirectional relationship through the gut-brain axis. Immunotherapies, such as Treg cells infusion, have been proposed for IBD. However, the role of adaptive immune cells in IBD-induced neuroinflammation remains unclear. In this study, we established an animal model for IBD in mice with severe combined immune-deficient (SCID), an adaptive immune deficiency, to investigate the role of adaptive immune cells in IBD-induced neuroinflammation. Mice were fed 1%, 3%, or 5% dextran sulfate sodium (DSS) for 5 days. We measured body weight, colon length, disease activity index (DAI), and crypt damage. Pro-inflammatory cytokines were measured in the colon, while microglial morphology, neuronal count, and inflammatory cytokines were analyzed in the brain. In the 3% DSS group, colitis symptoms appeared at day 7, with reduced colon length and increased crypt damage showing colitis-like symptoms. By day 21, colon length and crypt damage persisted, while DAI showed recovery. Although colonic inflammation peaked at day 7, no significant increase in inflammatory cytokines or microglial hyperactivation was observed in the brain. By day 21, neuroinflammation was detected, albeit with a slight delay, in the absence of adaptive immune cells. The colitis-induced neuroinflammation model provides insights into the fundamental immune mechanisms of the gut-brain axis and may contribute to developing immune cell therapies for IBD-induced neuroinflammation.
Collapse
Affiliation(s)
- Sung Hee Park
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon 22711, Korea
| | - Junghwa Kang
- Research & Development, IMMUNISBIO CO. Ltd., Incheon 22711, Korea
| | - Ji-Young Lee
- Research & Development, IMMUNISBIO CO. Ltd., Incheon 22711, Korea
| | - Jeong Seon Yoon
- Research & Development, IMMUNISBIO CO. Ltd., Incheon 22711, Korea
| | - Sung Hwan Hwang
- Research & Development, IMMUNISBIO CO. Ltd., Incheon 22711, Korea
| | - Ji Young Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon 22711, Korea
| | - Deepak Prasad Gupta
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon 22711, Korea
| | - Il Hyun Baek
- Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon 22711, Korea
| | - Ki Jun Han
- Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon 22711, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon 22711, Korea
- Department of Medical Science, Catholic Kwandong University, Gangneung 25601, Korea
| |
Collapse
|
4
|
Wang B, Bai X, Yang Y, Yang H. Possible linking and treatment between Parkinson's disease and inflammatory bowel disease: a study of Mendelian randomization based on gut-brain axis. J Transl Med 2025; 23:45. [PMID: 39799347 PMCID: PMC11725218 DOI: 10.1186/s12967-024-06045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable. Thus, we aimed to identify the causal relationships and novel therapeutic targets shared between them based on their common pathophysiological mechanisms in gut-brain-axis (GBA). METHODS A meta-analysis on bidirectional Mendelian randomization (MR) utilizing various datasets was performed to estimate their causal relationship. Then, pleiotropic analysis under the composite null hypothesis (PLACO) with functional mapping combined with annotation of genetic associations (FUMA) analysis were conducted to identify pleiotropic genes. Next, blood, brain and intestine expression quantitative trait locus (eQTL) were taken to perform drug-target MR finding common causal genes in two diseases. Colocalization analysis ensured the eQTLs of corresponding gene colocalized with disease. Enrichment analysis and protein‒protein interaction (PPI) network were done to explore common pathogenesis pathways. Genes passed all analysis were regarded as drug targets. RESULTS Our MR meta-analysis revealed the bidirectional causal relationship between diseases, with combined ORs for PD on IBD, CD, UC (1.050 [95% CI 1.014-1.086], 1.044 [95% CI 0.995-1.095], 1.063 [95% CI 1.016-1.120]); for IBD, CD, UC on PD (1.003 [95% CI 0.973-1.034], 1.035 [95% CI 1.004-1.067], 1.008 [95% CI 0.977-1.040]). Overall, 277, 216 and 201 genes were identified as pleiotropic genes between PD and IBD, CD, UC. Total of 733 genes were classified as tier 3 (found in only one tissue) druggable targets, 57 as tier 2 (found in two tissues, 51 protein-coding genes) and 9 as tier 3 (found in three tissues). Among 60 protein-coding druggable targets over tier 2, 18 overlapped with pleiotropic genes and enriched in mitochondria, antigen presentation, processing and immune cell regulation pathways. Three druggable genes (LRRK2, RAB29 and HLA-DQA2) passed colocalization analysis. LRRK2 and RAB29 were reported to be pleiotropic genes, and RAB29 and HLA-DQA2 were reported for the first time as potential drug targets. CONCLUSIONS This study established a reliable causal relationship, possible shared drug targets and common pathogenesis pathways of two diseases, which had important implications for intervention and treatment of two diseases simultaneously.
Collapse
Affiliation(s)
- Beiming Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- 4+4 medical doctor program, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5, DongDanSanTiao, DongCheng District, Beijing, 100730, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yingmai Yang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Zamani M, Ebrahimtabar F, Alizadeh-Tabari S, Kasner SE, Elkind MSV, Ananthakrishnan AN, Choden T, Rubin DT, Malekzadeh R. Risk of Common Neurological Disorders in Adult Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Inflamm Bowel Dis 2024; 30:2195-2204. [PMID: 38271615 DOI: 10.1093/ibd/izae012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Several studies investigated the risks of neurological conditions in patients with inflammatory bowel disease (IBD), with some variability in findings. We aimed to perform a systematic review and meta-analysis of available evidence to elucidate the association between IBD and the risks of common neurological disorders. METHODS We conducted a literature search through Embase, PubMed, Scopus, and ProQuest databases from inception to June 30, 2023, to identify cohort studies assessing the risk of developing stroke, all-cause dementia, Parkinson's disease (PD), multiple sclerosis (MS), seizure/epilepsy, and peripheral neuropathy in adult IBD patients compared with non-IBD population. We combined hazard ratios (HRs) with 95% confidence intervals (CIs) to compute pooled estimates using a random-effects model. RESULTS In total, 22 cohort studies were included, of which 9 studies reported 7074 stroke events in 202 460 IBD patients, 5 studies reported 3783 all-cause dementia diagnoses in 109 602 IBD patients, 7 studies reported 932 PD diagnoses in 354 792 IBD patients, and 1 study reported 6 MS events in 35 581 IBD patients. We observed increased risks of incident stroke (pooled HR = 1.19; 95% CI, 1.06-1.31), all-cause dementia (pooled HR = 1.22; 95% CI, 1.05-1.38), PD (pooled HR = 1.39; 95% CI, 1.20-1.58), and MS (HR = 2.89; 95% CI, 1.02-8.42). No eligible studies were found on peripheral neuropathy and seizure/epilepsy. CONCLUSIONS Inflammatory bowel disease may be modestly associated with increased risks of stroke, all-cause dementia, and PD. Further longitudinal studies are warranted to investigate potential links with MS, seizure/epilepsy, and peripheral neuropathy, as well as their clinical significance.
Collapse
Affiliation(s)
- Mohammad Zamani
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shaghayegh Alizadeh-Tabari
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tenzin Choden
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | - David T Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | - Reza Malekzadeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ghosh N, Sinha K, Sil PC. Pesticides and the Gut Microbiota: Implications for Parkinson's Disease. Chem Res Toxicol 2024; 37:1071-1085. [PMID: 38958636 DOI: 10.1021/acs.chemrestox.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Assistant Professor in Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Assistant Professor in Zoology, Jhargram Raj College, Jhargram 721507 India
| | - Parames C Sil
- Professor, Division of Molecular Medicine, Bose Institute, Kolkata 700054 India
| |
Collapse
|
7
|
Bhardwaj K, Singh AA, Kumar H. Unveiling the Journey from the Gut to the Brain: Decoding Neurodegeneration-Gut Connection in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2454-2469. [PMID: 38896463 DOI: 10.1021/acschemneuro.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
8
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
9
|
Wanyi Z, Jiao Y, Wen H, Bin X, Xuefei W, Lan J, Liuyin Z. Bidirectional communication of the gut-brain axis: new findings in Parkinson's disease and inflammatory bowel disease. Front Neurol 2024; 15:1407241. [PMID: 38854967 PMCID: PMC11157024 DOI: 10.3389/fneur.2024.1407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease (PD) and inflammatory bowel disease (IBD) are the two chronic inflammatory diseases that are increasingly affecting millions of people worldwide, posing a major challenge to public health. PD and IBD show similarities in epidemiology, genetics, immune response, and gut microbiota. Here, we review the pathophysiology of these two diseases, including genetic factors, immune system imbalance, changes in gut microbial composition, and the effects of microbial metabolites (especially short-chain fatty acids). We elaborate on the gut-brain axis, focusing on role of gut microbiota in the pathogenesis of PD and IBD. In addition, we discuss several therapeutic strategies, including drug therapy, fecal microbiota transplantation, and probiotic supplementation, and their potential benefits in regulating intestinal microecology and relieving disease symptoms. Our analysis will provide a new understanding and scientific basis for the development of more effective therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Zhang Wanyi
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Yan Jiao
- Department of Nursing, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Huang Wen
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Xu Bin
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Wang Xuefei
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Jiang Lan
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Zhou Liuyin
- Department of Respiratory Medicine, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| |
Collapse
|
10
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
11
|
Thomasi B, Valdetaro L, Ricciardi MC, Gonçalves de Carvalho M, Fialho Tavares I, Tavares-Gomes AL. Enteric glia as a player of gut-brain interactions during Parkinson's disease. Front Neurosci 2023; 17:1281710. [PMID: 38027511 PMCID: PMC10644407 DOI: 10.3389/fnins.2023.1281710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The enteric glia has been shown as a potential component of neuroimmune interactions that signal in the gut-brain axis during Parkinson's disease (PD). Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) that, associated with enteric neurons, command various gastrointestinal (GI) functions. They are a unique cell type, with distinct phenotypes and distribution in the gut layers, which establish relevant neuroimmune modulation and regulate neuronal function. Comprehension of enteric glial roles during prodromal and symptomatic phases of PD should be a priority in neurogastroenterology research, as the reactive enteric glial profile, gastrointestinal dysfunction, and colonic inflammation have been verified during the prodromal phase of PD-a moment that may be interesting for interventions. In this review, we explore the mechanisms that should govern enteric glial signaling through the gut-brain axis to understand pathological events and verify the possible windows and pathways for therapeutic intervention. Enteric glia directly modulate several functional aspects of the intestine, such as motility, visceral sensory signaling, and immune polarization, key GI processes found deregulated in patients with PD. The search for glial biomarkers, the investigation of temporal-spatial events involving glial reactivity/signaling, and the proposal of enteric glia-based therapies are clearly demanded for innovative and intestine-related management of PD.
Collapse
Affiliation(s)
- Beatriz Thomasi
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Luisa Valdetaro
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Maria Carolina Ricciardi
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Isabela Fialho Tavares
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Lucia Tavares-Gomes
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
12
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
13
|
Čović M, Zjalić M, Mihajlović L, Pap M, Wagner J, Mandić D, Debeljak Ž, Heffer M. Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites 2023; 13:817. [PMID: 37512524 PMCID: PMC10385368 DOI: 10.3390/metabo13070817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Sucralose is widely used as a non-nutritive sweetener (NNS). However, in order to justify its use as a non-nutritive food additive, sucralose would have to be metabolically neutral. The aim of this study was to examine whether sucralose altered the insulin signaling pathway in an in vitro cell model of Parkinson's disease (PD)-the dopaminergic differentiated cell line SH-SY5Y. Cells were exposed to sucralose alone and in combination with either insulin or levodopa. Activation of the insulin signaling pathway was assessed by quantifying protein kinase B (AKT) and glycogen synthase kinase 3 (GSK3), as well as the phosphorylated forms of insulin-like growth factor 1 receptor (IGF1-R). Metabolic effects were assayed using MALDI-TOF MS analysis. In the cell viability test, 2 mM sucralose had a negative effect, and levodopa in all combinations had a positive effect. Sucralose treatment alone suppressed GSK3 and IGF1-R phosphorylation in a dose-dependent manner. This treatment also altered the metabolism of fatty acids and amino acids, especially when combined with insulin and levodopa. Suppression of the insulin signaling pathway and sucralose-induced changes in the metabolic profile could underlie a diet-acquired insulin resistance, previously associated with neurodegeneration, or may be an altered response to insulin or levodopa medical therapy.
Collapse
Affiliation(s)
- Marina Čović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lovro Mihajlović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|