1
|
Yu D, Zhan J, Du H, Zhu P, Hu H, Xu H, Zhang L, Hu F, Bi Z, Yang X, Li Y, Lian J. Comparison of clinical efficacy and secondary infections between conventional-dose and high-dose glucocorticoid in hemorrhagic fever with renal syndrome: a dual-center retrospective cohort study. BMC Infect Dis 2025; 25:775. [PMID: 40448030 DOI: 10.1186/s12879-025-11148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Glucocorticoids (GC) are commonly administered during the febrile and hypotensive phases of hemorrhagic fever with renal syndrome (HFRS) to alleviate inflammation and capillary leakage. However, clinical dosing regimens show marked variability. This study aims to evaluate the clinical necessity of high-dose GC therapy during the acute phase of HFRS. METHODS A retrospective study involving 807 HFRS patients admitted to two centers was conducted. Propensity score matching and multivariate logistic regression models were used to compare the effects of conventional-dose and high-dose GC on HFRS treatment outcomes and the risk of secondary infections. RESULTS There were no significant differences in hospital stay, acute-phase fluid requirement, renal replacement rates, mechanical ventilation needs, severe hemorrhagic complications, or mortality between HFRS patients receiving conventional or high-dose GC. Among patients with a shock phase, the secondary infections rate was significantly higher with high-dose GC compared to conventional-dose (43.48% vs. 23.91%, p = 0.005). High-dose GC emerged as an independent risk factor for secondary infections (OR 2.88, 95%CI 1.41-5.88), while prophylactic antibiotics served as an independent protective factor (OR 0.29, 95%CI 0.13-0.65). In patients without a shock phase, no significant difference was observed in the effect of the two GC doses on secondary infections. However, GC therapy ≥ 4 days was an independent risk factor (OR 2.54, 95%CI 1.21-5.37). CONCLUSIONS High-dose GC show no superiority over conventional-dose GC on hospital stay, acute-phase fluid requirement, renal replacement rates, mechanical ventilation needs, severe hemorrhagic complications, or mortality. High-dose GC may increase secondary infections in HFRS patients with a shock phase. GC therapy ≥ 4 days may also increase secondary infections in patients without a shock phase.
Collapse
Affiliation(s)
- Denghui Yu
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Jiayi Zhan
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Hong Du
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Pingping Zhu
- Department of Rehabilitation Medicine, Air Force Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Hongkai Xu
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Ludan Zhang
- Department of Infectious Diseases, the Eighth Hospital of Xi 'an, Xi 'an, China
| | - Fei Hu
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Zhanhu Bi
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Xiaofei Yang
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China
| | - Yanping Li
- Department of Infectious Diseases, the Eighth Hospital of Xi 'an, Xi 'an, China.
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital of the Fourth Military Medical University, No. 569 Xinsi Road, Xi 'an, 710038, China.
| |
Collapse
|
2
|
Wu M, Yan Y, Xie X, Bai J, Ma C, Du X. Effect of endothelial responses on sepsis-associated organ dysfunction. Chin Med J (Engl) 2024; 137:2782-2792. [PMID: 39501810 DOI: 10.1097/cm9.0000000000003342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Sepsis-related organ dysfunction is associated with increased morbidity and mortality. Previous studies have found that the endothelium plays crucial roles in maintaining the vascular permeability during sepsis, as well as in regulating inflammation and thrombosis. During sepsis, endothelial cells may release cytokines, chemokines, and pro-coagulant factors, as well as express adhesion molecules. In general, endothelial responses during sepsis typically inhibit bacterial transmission and coordinate leukocyte recruitment to promote bacterial clearance. However, excessive or prolonged endothelial activation can lead to impaired microcirculation, tissue hypoperfusion, and organ dysfunction. Given the structural and functional heterogeneity of endothelial cells in different organs, there are potential differences in endothelial responses by organ type, and the risk of organ damage may vary accordingly. This article reviews the endothelial response observed in sepsis and its effects on organ function, summarizes current progress in the development of therapeutic interventions targeting the endothelial response, and discusses future research directions to serve as a reference for researchers in the field.
Collapse
Affiliation(s)
- Miao Wu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyu Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xianjin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
3
|
Wang Z, Dayang EZ, Zwiers PJ, Hernandez Garcia ML, Luxen M, van Meurs M, Moser J, Kamps JAAM, Molema G. Heterogeneous Patterns of Endothelial NF-κB p65 and MAPK c-Jun Activation, Adhesion Molecule Expression, and Leukocyte Recruitment in Lung Microvasculature of Mice with Sepsis. Biomedicines 2024; 12:1672. [PMID: 39200137 PMCID: PMC11351379 DOI: 10.3390/biomedicines12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial cells (EC) participate in this process by facilitating tethering, rolling, adhesion, and transmigration of leukocytes via adhesion molecules on their cell surface. In in vivo studies, endothelial nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and mitogen-activated protein kinase (MAPK) c-Jun intracellular signal transduction pathways were reported to regulate the expression of adhesion molecules. METHODS Mice underwent cecal ligation and puncture (CLP) to induce polymicrobial sepsis and were sacrificed at different time points up to 72 h after sepsis onset. Immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine the kinetics of nuclear localization of p65 and c-Jun in EC, expression and location of adhesion molecules E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Furthermore, the extent and location of leukocyte recruitment were assessed based on Ly6G staining of neutrophils, cluster determinant (CD) 3 staining of T lymphocytes, and CD68 staining of macrophages. RESULTS In all pulmonary microvascular beds, we identified p65 and c-Jun nuclear accumulation in a subset of endothelial cells within the first 24 h after CLP-sepsis initiation. E-selectin protein was expressed in a subset of microvessels at 4 and 7 h after sepsis initiation, while VCAM-1 was expressed in a scattered pattern in alveolar tissue and microvessels, without discernible changes during sepsis development. CLP-induced sepsis predominantly promoted the accumulation of neutrophils and T lymphocytes 4 and 7 h after disease onset. Neutrophil accumulation occurred in all pulmonary microvascular beds, while T lymphocytes were present in alveolar tissue and postcapillary venules. Taken together, nuclear localization of p65 and c-Jun in EC and neutrophil recruitment could be associated with induced E-selectin expression in the pulmonary microvessels in CLP-septic mice at the early stage of the disease. In alveolar capillaries, on the other hand, activation of these molecular pathways and leukocyte accumulation occurred in the absence of E-selectin or VCAM-1. CONCLUSIONS Endothelial activation and leukocyte recruitment in sepsis-induced lung injury are regulated by multiple, heterogeneously controlled mechanisms, which vary depending on the type of microvascular bed involved.
Collapse
Affiliation(s)
- Zhendong Wang
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| | - Erna-Zulaikha Dayang
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| | - Peter J. Zwiers
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| | - Martha L. Hernandez Garcia
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| | - Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan A. A. M. Kamps
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (Z.W.); (E.-Z.D.); (M.L.H.G.); (M.L.); (M.v.M.); (J.M.); (J.A.A.M.K.)
| |
Collapse
|
4
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|