1
|
Jerka D, Bonowicz K, Piekarska K, Gokyer S, Derici US, Hindy OA, Altunay BB, Yazgan I, Steinbrink K, Kleszczyński K, Yilgor P, Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS APPLIED BIO MATERIALS 2024; 7:2054-2069. [PMID: 38520346 PMCID: PMC11022177 DOI: 10.1021/acsabm.3c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cell migration is vital for many fundamental biological processes and human pathologies throughout our life. Dynamic molecular changes in the tissue microenvironment determine modifications of cell movement, which can be reflected either individually or collectively. Endothelial cell (EC) migratory adaptation occurs during several events and phenomena, such as endothelial injury, vasculogenesis, and angiogenesis, under both normal and highly inflammatory conditions. Several advantageous processes can be supported by biomaterials. Endothelial cells are used in combination with various types of biomaterials to design scaffolds promoting the formation of mature blood vessels within tissue engineered structures. Appropriate selection, in terms of scaffolding properties, can promote desirable cell behavior to varying degrees. An increasing amount of research could lead to the creation of the perfect biomaterial for regenerative medicine applications. In this review, we summarize the state of knowledge regarding the possible systems by which inflammation may influence endothelial cell migration. We also describe the fundamental forces governing cell motility with a specific focus on ECs. Additionally, we discuss the biomaterials used for EC culture, which serve to enhance the proliferative, proangiogenic, and promigratory potential of cells. Moreover, we introduce the mechanisms of cell movement and highlight the significance of understanding these mechanisms in the context of designing scaffolds that promote tissue regeneration.
Collapse
Affiliation(s)
- Dominika Jerka
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| | - Klaudia Piekarska
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Seyda Gokyer
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Utku Serhat Derici
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Osama Ali Hindy
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Baris Burak Altunay
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Işıl Yazgan
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Kerstin Steinbrink
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Pinar Yilgor
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Maciej Gagat
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|