1
|
Cabral AS, Lacerda FDF, Leite VLM, de Miranda FM, da Silva AB, Dos Santos BA, Lima JLDC, Teixeira LM, Neves FPG. CRISPR-Cas systems in enterococci. Braz J Microbiol 2024; 55:3945-3957. [PMID: 39438415 PMCID: PMC11711564 DOI: 10.1007/s42770-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are members of the microbiota of humans and other animals. They can also be found in the environment, associated with food, healthcare infections, and hospital settings. Due to their wide distribution, they are inserted in the One Health context. The selective pressure caused by the extensive use of antimicrobial agents in humans, animals, and agriculture has increased the frequency of resistance to various drugs among enterococcal species. CRISPR-Cas system, an important prokaryotic defense mechanism against the entry of mobile genetic elements, may prevent the acquisition of genes involved in antimicrobial resistance and virulence. This system has been increasingly used as a gene editing tool, which can be used as a way to recognize and inactivate genes of interest. Here, we conduct a review on CRISPR systems found in enterococci, considering their occurrence, structure and organization, mechanisms of action and use as a genetic engineering technology. Type II-A CRISPR-Cas systems were shown to be the most frequent among enterococcal species, and the orphan CRISPR2 was the most commonly found system (54.1%) among enterococcal species, especially in Enterococcus faecalis. Distribution of CRISPR systems varied among species. CRISPR systems had 1 to 20 spacers, with size between 23 and 37 bp and direct repeat sequences from 25 to 37 bp. Several applications of the CRISPR-Cas biotechnology have been described in enterococci, mostly in vitro, using this editing tool to target resistance- and virulence-related genes.
Collapse
Affiliation(s)
- Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Fernanda de Freitas Lacerda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Vitor Luis Macena Leite
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Filipe Martire de Miranda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Bárbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Jailton Lobo da Costa Lima
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
2
|
Kwon J, Ko HJ, Yang MH, Park C, Park SC. Antibiotic Resistance and Species Profile of Enterococcus Species in Dogs with Chronic Otitis Externa. Vet Sci 2022; 9:592. [PMID: 36356069 PMCID: PMC9695832 DOI: 10.3390/vetsci9110592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2024] Open
Abstract
Otitis externa, a common disease in dogs, has different etiologies. Enterococcus is a Gram-positive bacterium that frequently causes opportunistic ear infections. Here, we determined the distribution of Enterococcus in canine otitis externa via time-of-flight mass spectrometry and biochemical tests and evaluated their resistance patterns to 10 commonly used antibiotics. Among the 197 Enterococcus isolates, E. faecalis (48.7%; 96/197) was the most common, followed by E. faecium (21.3%; 42/197), E. casseliflavus (11.7%; 23/197), E. hirae (10.7%; 21/197), E. avium (3.6%; 7/197), E. gallinarum (2.5%; 5/197), E. canintestini (1.0%; 2/197), and E. durans (0.5%; 1/197). All isolates were tested for antibiotic resistance using the Kirby-Bauer disc diffusion method. Enterococcus faecalis strains were highly resistant to erythromycin (45.8%) and rifampin (34.3%) but were generally susceptible to penicillin class antibiotics. In contrast, E. faecium isolates were highly resistant to penicillin class antibiotics (ampicillin, 61.9%; penicillin, 71.4%). Most importantly, E. faecium demonstrated high resistance to most of the antibiotics used in this study. Multidrug resistance was found in 28.4% of the isolates (56/197). This study shows prevalence and antibiotics resistance profiles of Enterococcus species in canine chronic otitis externa. The results can contribute to establish therapeutic strategies of Enterococcus infections and be used as a comparable index of antibiotic resistance of Enterococcus in the future.
Collapse
Affiliation(s)
- Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hyoung Joon Ko
- Department of Veterinary Internal Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Myoung Hwan Yang
- Department of Veterinary Internal Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chul Park
- Department of Veterinary Internal Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Chitra MA, Varughese HS. Analysis of CRISPR-Cas system and antimicrobial resistance in Staphylococcus coagulans isolates. Lett Appl Microbiol 2022; 75:126-134. [PMID: 35366350 DOI: 10.1111/lam.13713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
CRISPR-Cas system contributes adaptive immunity to protect the bacterial and archaeal genome against invading mobile genetic elements. In this study, an attempt was made to characterize the CRISPR-Cas system in S. coagulans, the second most prevalent coagulase positive staphylococci causing skin infections in dogs. Out of 45 S. coagulans isolates, 42/45 (93.33%) strains contained CRISPR-Cas system and 45 confirmed CRISPR system was identified in 42 S. coagulans isolates. The length of CRISPR loci ranged from 167 bp to 2477 bp, and the number of spacers in each CRISPR was varied from two spacers to as high as 37 numbers. Direct repeat (DR) sequences were between 30 and 37, but most (35/45) of the direct repeats contained 36 sequences. The predominant S. coagulans strains 29/45 did not possess any antimicrobial resistant genes (ARG); 26/29 strains contained Type IIC CRISPR-Cas system. Three isolates from Antarctica seals neither contain CRISPR-Cas system nor ARG. Only 15/45 S. coagulans strains (33.33%) harboured at least one ARG and 13/15 of them were having mecA gene. All the methicillin susceptible S. coagulans isolates contained Type IIC CRISPR-Cas system. In contrast, many (10/13) S. coagulans isolates which were methicillin resistant had Type IIIA CRISPR-Cas system, and this Type IIIA CRISPR-Cas system was present within the SCCmec mobile genetic element. Hence, this study suggests that Type II CRISPR-Cas in S. coagulans isolates might have played a possible role in preventing acquisition of plasmid/ phage invasion and Type IIIA CRISPR-Cas system may have an insignificant role in the prevention of horizontal gene transfer of antimicrobial resistance genes in S. coagulans species.
Collapse
Affiliation(s)
- M Ananda Chitra
- Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007
| | - Hridya Susan Varughese
- Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007
| |
Collapse
|
4
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
5
|
Farias BOD, Bianco K, Nascimento APA, Gonçalves de Brito AS, Moreira TC, Clementino MM. Genomic Analysis of Multidrug-Resistant Enterococcus faecium Harboring vanA Gene from Wastewater Treatment Plants. Microb Drug Resist 2022; 28:444-452. [PMID: 35172112 DOI: 10.1089/mdr.2021.0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of vancomycin-resistant Enterococcus faecium (Efm) harboring vanA gene and multidrug-resistant determinants is a relevant public health concern. It is an opportunistic pathogen responsible for nosocomial infections widely distributed in the environment, including wastewater treatment plants (WWTPs). Our study addresses a genomic investigation of vanA-carrying Efm from WWTPs in Brazil. Samples from five WWTPs supplied with sewage from different sources were evaluated. Here we present whole-genome sequencing of eight vanA-Efm isolates performed on Illumina MiSeq platform. All these isolates presented multidrug-resistant profile, and five strains were from treated wastewater. Multiple antimicrobial resistance genes (ARGs) were found, such as aph(3')-IIIa, ant(6')-Ia, erm(B), and msrC, some of them being allocated in plasmids. The virulence profile was predominantly constituted by efaAfm and acm genes and all isolates, except for one, were predicted as human pathogens. Multilocus sequence typing analysis revealed a new allele and five different STs, three previously described (ST32, ST168, and ST253) and two novel ones (ST1893 and ST1894). Six strains belonged to CC17, often associated with hospital outbreaks. As far as our knowledge, no genomic studies of vanA-Efm recovered from WWTPs revealed isolates belonging to CC17 in Brazil. Therefore, our findings point to the environmental spread of Efm carrying multiple ARGs.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Alves Nascimento
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Thais Costa Moreira
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maysa Mandetta Clementino
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
6
|
Antimicrobial Resistance Gene Detection and Plasmid Typing Among Multidrug Resistant Enterococci Isolated from Freshwater Environment. Microorganisms 2020; 8:microorganisms8091338. [PMID: 32887339 PMCID: PMC7563215 DOI: 10.3390/microorganisms8091338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, mechanisms of antimicrobial resistance (AR) as well as the abundance and diversity of plasmids were determined among multidrug resistant (MDR) enterococci from surface water in GA, USA. A total of 51 enterococci isolates were screened for the presence of 27 AR genes conferring resistance to ciprofloxacin, erythromycin, tylosin, kanamycin, streptomycin, lincomycin, Quinupristin/Dalfopristin (Q/D), and tetracycline. A plasmid classification system based on replication genes was used to detect 19 defined Gram-positive plasmid replicon families. Twelve genes were identified as conferring resistance to erythromycin and tylosin (erm(B) and erm(C)), kanamycin (aph(3′)-IIIa), streptomycin (ant(6)-Ia), lincomycin (lnu(B)), Q/D (vat(E)), ciprofloxacin (qnrE. faecalis), and tetracycline (tet(K), tet(L), tet(M), tet(O) and tet(S)). Twelve different rep-families were identified in two-thirds of the isolates. While AR genes commonly found in human and animals were detected in this study among environmental enterococci, resistance genes could not be determined for many of the isolates, which indicates that diverse AR mechanisms exist among enterococci, and the understanding of AR mechanisms for environmental enterococci is limited. Diverse rep-families were identified among the enterococci recovered from the aquatic environment, and these rep-families appear to be quite different from those recovered from other sources. This work expands knowledge of AR gene reservoirs and enterococcal plasmids across a wider range of environments.
Collapse
|
7
|
Najar IN, Sherpa MT, Das S, Thakur N. Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Funct Integr Genomics 2020; 20:479-496. [PMID: 31897823 DOI: 10.1007/s10142-019-00723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Sikkim is one of the bio-diverse states of India, which harbors diverse alkaline and sulfur rich hot springs in its vicinity. However, there is a dearth of data present in terms of microbial and its functional diversity as only a few hot springs have been studied in this area. Thus, in this regard, microbial and functional diversity of two hot springs by NGS, PLFA, and culture-independent approaches were carried out. PLFA and culture-dependent analysis was complementary as the Gram-positive bacteria were abundant in both the hot springs with the dominance of phylum Firmicutes with Geobacillus. Metagenomic analysis revealed the abundance of Proteobacteria, Actinobacteria, and Firmicutes in both hot springs. Functional metagenomics suggested that both Yumthang and Reshi hot spring possess a diverse set of genes analogous to stress such as genes allied to osmotic, heat shock, and acid stresses; defense analogies such as multidrug resistance efflux pump, multidrug transport system, and β-lactamase; and CRISPR analogues such as related to Cas1, Cas2, Cas3, cmr1-5 proteins, CT1972, and CT1133 gene families. The xenobiotic analogues were found against benzoate, nitrotolune, xylene, DDT, and chlorocyclohexane/chlorobenzene degradation. Thus, these defensive mechanisms against environmental and anthropogenic hiccups and hindrances provide the eco-efficiency to such thermal habitats. The higher enzymatic, degradation, defense, stress potential and the lower percentage identity (< 95%) of isolates encourage the further exploration and exploitation of these habitats for industrial and biotechnological purposes.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Chemical Engineering and Biomolecular Engineering, Korean Advance Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
8
|
Talaga-Ćwiertnia K, Bulanda M. DRUG RESISTANCE IN THE GENUS ENTEROCOCCUS - CURRENT PROBLEM IN HUMANS AND ANIMALS. ADVANCEMENTS OF MICROBIOLOGY 2019. [DOI: 10.21307/pm-2018.57.3.244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Stępień-Pyśniak D, Hauschild T, Dec M, Marek A, Urban-Chmiel R. Clonal Structure and Antibiotic Resistance of Enterococcus spp. from Wild Birds in Poland. Microb Drug Resist 2019; 25:1227-1237. [PMID: 31107150 DOI: 10.1089/mdr.2018.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to analyze the antibiotic resistance and genetic diversity of 27 enterococci (Enterococcus faecium, Enterococcus hirae, Enterococcus durans, and Enterococcus casseliflavus) isolated from wild bird species. Resistance to lincomycin was most common, followed by erythromycin, ciprofloxacin, tetracyclines, high level of aminoglycoside, and β-lactam antibiotics. No vancomycin- and chloramphenicol-resistant isolates were identified. The antibiotic resistance was linked to the tet(M), tet(L), erm(A), erm(B), msr(A/B), pbp5, ant(6)-Ia, and aph(3')-IIIa genes. Tn916/Tn1545-like transposons were detected. The high-level resistance to gentamicin was associated with the presence of gene aph(2″)-Id. All 18 E. faecium isolates were divided into 16 pulsotypes and 17 sequence types (STs), among which 7 STs were newly assigned (ST1266-ST1272). A majority of E. faecium isolates possess multilocus sequence typing profiles belonging to clonal complex 17 (CC17), the major epidemic lineage responsible for nosocomial infections. Two ST17 and newly described ST1267 and ST1271 (an SLV and DLV of ST17, respectively) of E. faecium isolates carried the type 1 allele of the housekeeping gene purK detected in hospital-related strains. Our results indicated that wild birds could be a source of resistant E. faecium isolates, belonging to CC17 and may represent a hazard to human health by transmission of these isolates.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
10
|
Greco I, Hansen JE, Jana B, Molchanova N, Oddo A, Thulstrup PW, Damborg P, Guardabassi L, Hansen PR. Structure⁻Activity Study, Characterization, and Mechanism of Action of an Antimicrobial Peptoid D2 and Its d- and l-Peptide Analogues. Molecules 2019; 24:E1121. [PMID: 30901860 PMCID: PMC6470533 DOI: 10.3390/molecules24061121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) constitutes an emerging health problem for companion animals in veterinary medicine. Therefore, discovery of novel antimicrobial agents for treatment of Staphylococcus-associated canine infections is urgently needed to reduce use of human antibiotics in veterinary medicine. In the present work, we characterized the antimicrobial activity of the peptoid D2 against S. pseudintermedius and Pseudomonas aeruginosa, which is another common integumentary pathogen in dogs. Furthermore, we performed a structure⁻activity relationship study of D2, which included 19 peptide/peptoid analogs. Our best compound D2D, an all d-peptide analogue, showed potent minimum inhibitory concentrations (MICs) against canine S. pseudintermedius (2⁻4 µg/mL) and P. aeruginosa (4 µg/mL) isolates as well as other selected dog pathogens (2⁻16 µg/mL). Time⁻kill assays demonstrated that D2D was able to inhibit MRSP in 30 min at 1× MIC, significantly faster than D2. Our results suggest that at high concentrations D2D is rapidly lysing the bacterial membrane while D2 is inhibiting macromolecular synthesis. We probed the mechanism of action at sub-MIC concentrations of D2, D2D, the l-peptide analog and its retro analog by a macromolecular biosynthesis assay and fluorescence spectroscopy. Our data suggest that at sub-MIC concentrations D2D is membrane inactive and primarily works by cell wall inhibition, while the other compounds mainly act on the bacterial membrane.
Collapse
Affiliation(s)
- Ines Greco
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Johannes E Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | - Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Greco I, Emborg AP, Jana B, Molchanova N, Oddo A, Damborg P, Guardabassi L, Hansen PR. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci Rep 2019; 9:3679. [PMID: 30842436 PMCID: PMC6403271 DOI: 10.1038/s41598-019-39042-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Integumentary infections like pyoderma represent the main reason for antimicrobial prescription in dogs. Staphylococcus pseudintermedius and Pseudomonas aeruginosa are frequently identified in these infections, and both bacteria are challenging to combat due to resistance. To avoid use of important human antibiotics for treatment of animal infections there is a pressing need for novel narrow-spectrum antimicrobial agents in veterinary medicine. Herein, we characterize the in vitro activity of the novel peptide-peptoid hybrid B1 against canine isolates of S. pseudintermedius and P. aeruginosa. B1 showed potent minimum inhibitory concentrations (MICs) against canine S. pseudintermedius and P. aeruginosa isolates as well rapid killing kinetics. B1 was found to disrupt the membrane integrity and affect cell-wall synthesis in methicillin-resistant S. pseudintermedius (MRSP). We generated 28 analogues of B1, showing comparable haemolysis and MICs against MRSP and P. aeruginosa. The most active analogues (23, 26) and B1 were tested against a collection of clinical isolates from canine, of which only B1 showed potent activity. Our best compound 26, displayed activity against P. aeruginosa and S. pseudintermedius, but not the closely related S. aureus. This work shows that design of target-specific veterinary antimicrobial agents is possible, even species within a genus, and deserves further exploration.
Collapse
Affiliation(s)
- Ines Greco
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Agnete Plahn Emborg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Novo Nordisk, Brennum Park 1, 3400, Hilleroed, Denmark
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Roskilde University, Department of Science and Environment, 4000, Roskilde, Denmark
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Novo Nordisk A/S, Krogshøjvej 44, 2820, Bagsværd, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, Hatfield, Herts, United Kingdom
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Ekundayo TC, Okoh AI. Pathogenomics of Virulence Traits of Plesiomonas shigelloides That Were Deemed Inconclusive by Traditional Experimental Approaches. Front Microbiol 2018; 9:3077. [PMID: 30627119 PMCID: PMC6309461 DOI: 10.3389/fmicb.2018.03077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
One of the major challenges of modern medicine includes the failure of conventional protocols to characterize the pathogenicity of emerging pathogens. This is particularly apparent in the case of Plesiomonas shigelloides. Although a number of infections have been linked to this microorganism, experimental evidence of its virulence factors (VFs), obtained by traditional approaches, is somewhat inconclusive. Hence, it remains unclear whether P. shigelloides is a true or opportunistic one. In the current study, four publicly available whole-genome sequences of P. shigelloides (GN7, NCTC10360, 302-73, and LS1) were profiled using bioinformatics platforms to determine the putative candidate VFs to characterize the bacterial pathogenicity. Overall, 134 unique open reading frames (ORFs) were identified that were homologous or orthologous to virulence genes identified in other pathogens. Of these, 52.24% (70/134) were jointly shared by the strains. The numbers of strain-specific virulence traits were 4 in LS1; 7 in NCTC10360; 10 in 302-73; and 15 in GN7. The pathogenicity islands (PAIs) common to all the strains accounted for 24.07% ORFs. The numbers of PAIs exclusive to each strain were 8 in 302-73; 11 in NCTC10360; 14 in GN7; and 18 in LS1. A PAI encoding Vibrio cholerae ToxR-activated gene d protein was specific to 302-73, GN7, and NCTC10360 strains. Out of 33 antibiotic multi-resistance genes identified, 16 (48.48%) genes were intrinsic to all strains. Further, 17 (22.08%) of 77 antibiotic resistance islands were found in all the strains. Out of 23 identified distinct insertion sequences, 13 were only harbored by strain LS1. The number of intact prophages identified in the strains was 1 in GN7; 2 in 302-73; and 2 in NCTC10360. Further, 1 CRISPR element was identified in LS1; 2 in NCTC10360; and 8 in 302-73. Fifteen (78.95%) of 19 secretion systems and secretion effector variants were identified in all the strains. In conclusion, certain P. shigelloides strains might possess VFs associated with gastroenteritis and extraintestinal infections. However, the role of host factors in the onset of infections should not be undermined.
Collapse
Affiliation(s)
- Temitope C. Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
13
|
Lee T, Pang S, Abraham S, Coombs GW. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. J Glob Antimicrob Resist 2018; 16:36-47. [PMID: 30149193 DOI: 10.1016/j.jgar.2018.08.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023] Open
Abstract
Enterococcus faecium is a robust opportunistic pathogen that is most commonly found as a commensal of the human and animal gut but can also survive in the environment. Since the introduction and use of antimicrobials, E. faecium has been found to rapidly acquire resistance genes that, when expressed, can effectively circumvent the effects of most antimicrobials. The rapid acquisition of multiple antimicrobial resistances has led to the adaptation of specific E. faecium clones in the hospital environment, collectively known as clonal complex 17 (CC17). CC17 E. faecium are responsible for a significant proportion of hospital-associated infections, which can cause severe morbidity and mortality. Here we review the history of E. faecium from commensal to a significant hospital-associated pathogen, its robust phenotypic characteristics, commonly used laboratory typing schemes, and antimicrobial resistances with a focus on vancomycin and its associated mechanism of resistance. Finally, we review the global epidemiology of vancomycin-resistant E. faecium and potential solutions to problems faced in public health.
Collapse
Affiliation(s)
- Terence Lee
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia.
| |
Collapse
|
14
|
Liang WJ, Liu HY, Duan GC, Zhao YX, Chen SY, Yang HY, Xi YL. Emergence and mechanism of carbapenem-resistant Escherichia coli in Henan, China, 2014. J Infect Public Health 2018; 11:347-351. [PMID: 29107607 DOI: 10.1016/j.jiph.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 09/09/2017] [Indexed: 12/17/2022] Open
Abstract
The emergence and dissemination of carbapenem-resistant Escherichia coli (E. coli) strains is a main risk for global public health, but little is known of carbapenemase producing E. coli in Henan, China. The study was undertaken to investigate the prevalence and mechanism of carbapenem-resistant E. coli strains in a hospital in Xinxiang, Henan, China, 2014. A total of 5 carbapenemase-producing E. coli strains were screened from 1014 isolates. We found that they were all resistant to meropenem and imipenem. Amikacin showed the best sensitivity, with gentamicin coming up next. The positive rate of blaNDM was 80% (4/5). The sequencing results showed that two isolates belonged to blaNDM-1 whereas other 2 isolates carried the blaNDM-5. Other carbapenemase genes including blaIMP,blaVIM, blaKPC and blaOXA-48 were not detected. The blaCTX-M-15,blaTEM-1,sul2, aad, and aac(6")-Ib-cr were also detected. MLST analysis showed that NDM-producing E. coli were sporadic. Conjugation test indicated blaNDM could be transferred. In conclusion, the blaNDM was the principal resistance mechanism of carbapenem-resistant E. coli in the hospital, Henan, China.
Collapse
Affiliation(s)
- Wen-Juan Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Hui-Ying Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Guang-Cai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Yong-Xin Zhao
- Laboratory Department, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shuai-Yin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Hai-Yan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yuan-Lin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
15
|
Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP, Adikwu AA, Maurice NA, Adamu AM. Characterization of high level ampicillin- and aminoglycoside-resistant enterococci isolated from non-hospital sources. J Med Microbiol 2017; 66:1027-1032. [DOI: 10.1099/jmm.0.000518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emmanuel O. Ngbede
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Pathology & Microbiology, University of Agriculture Makurdi, Benue State, Nigeria
| | - Mashood A. Raji
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Clara N. Kwanashie
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Jacob K. P. Kwaga
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Alex A. Adikwu
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health & Preventive Medicine, University of Agriculture Makurdi, Benue State, Nigeria
| | - Nanven A. Maurice
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Diagnostic and Extension, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Andrew M. Adamu
- Veterinary Teaching Hospital, University of Abuja, Abuja, Nigeria
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
16
|
Occurrence of ampicillin-resistant Enterococcus faecium carrying esp gene in pet animals: An upcoming threat for pet lovers. J Glob Antimicrob Resist 2017; 9:115-117. [PMID: 28499907 DOI: 10.1016/j.jgar.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES This study was carried out to investigate oral colonisation by Enterococcus faecalis and Enterococcus faecium in pet dogs and cats, with special reference to antibiotic resistance. METHODS Oral swabs were collected from 63 pet dogs and 57 pet cats with no known history of hospitalisation. All samples were enriched in Kenner Fecal (KF) broth before being cultured on KF agar to isolate enterococci. E. faecalis and E. faecium were identified by biochemical and molecular techniques. Antimicrobial resistance was determined by the disk diffusion method, and ampicillin-resistant strains were further examined by PCR to detect the esp gene. RESULTS Oral prevalence rates of E. faecalis among pet dogs and cats were 3.2% and 5.3%, respectively, whilst those for E. faecium were 22.2% and 15.8%, respectively. None of the isolated enterococci were resistant to vancomycin. However, ampicillin-resistant E. faecium (AREfm) was detected in the examined dogs and cats at rates of 14.3% and 5.3%, respectively. Moreover, among the isolated enterococci, six isolates showed multidrug resistance (all AREfm). Whilst the esp gene was detected in only two of nine canine AREfm isolates (multidrug-resistant strains), none of feline AREfm isolates harboured esp. CONCLUSIONS The occurrence of AREfm and the esp gene among oral isolates from pet dogs and cats represents a great public health hazard for pet owners and highlights possible zoonotic transmission of such a nosocomial pathogen outside healthcare facilities.
Collapse
|
17
|
Molecular assessment of virulence determinants, hospital associated marker (IS16gene) and prevalence of antibiotic resistance in soil borne Enterococcus species. Microb Pathog 2017; 105:298-306. [PMID: 28258002 DOI: 10.1016/j.micpath.2017.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Enterococci, no more regarded as GRAS (Generally Recognized As Safe) organism, are emerging as an important source of nosocomial infections worldwide. The main contributors in pathogenesis of enterococci are the presence of various virulent factors and antibiotic resistance genes. We aimed to examine the prevalence, dissemination, antibiotic resistance and virulent factors associated with enterococci from bulk soil (BS). A total of 372 enterococci were isolated from 500 soil samples. PCR was used to identify the isolates up to species level and for carriage of 16 virulence genes including hospital associated marker (i.e. IS16). E. faecium (77%), E. faecalis (10%), E. hirae (4%) and E. casseliflavus (1%) were the major species isolated. The efaAfs was the most dominant gene (100%), followed by gelE (78.9%), sprE (76.3%) and esp (13%) in E. faecalis isolates. The E. faecium carried largely efaAfm (86.8%) and acm (50.3%) genes. Presence of entP (10%), entA (8.3%) and entB (6.9%) genes was detected mostly in E. faecium, while enlA (18%) and ef1097 (2.6%) was only detected in E. faecalis isolates. 50% E. faecalis and 2% E. faecium isolates harbored IS16, while five E. faecalis harbored both IS16 and espTIM genes providing strong evidence about the presence of espTIM gene on 64 Kb pathogenicity island. BOX and RAPD PCR analysis revealed high degree of genetic variation within the species. Degree of resistance against 12 major antibiotics showed chloramphenicol as the most effective and meropenom as the least effective antibiotic. Presence of multiple antibiotic resistant, virulent and hospital associated enterococci in bulk soil represents a potential source for further dissemination to humans and animals and poses potential impact on public health.
Collapse
|
18
|
Novais C, Tedim AP, Lanza VF, Freitas AR, Silveira E, Escada R, Roberts AP, Al-Haroni M, Baquero F, Peixe L, Coque TM. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Front Microbiol 2016; 7:1581. [PMID: 27766095 PMCID: PMC5053079 DOI: 10.3389/fmicb.2016.01581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen.
Collapse
Affiliation(s)
- Carla Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ana P Tedim
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Val F Lanza
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ricardo Escada
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando PessoaPorto, Portugal
| | - Adam P Roberts
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Mohammed Al-Haroni
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| |
Collapse
|
19
|
Pinson DM. Frustrations, requirements, and expectations of skin biopsy for diagnosing skin disease. J Am Vet Med Assoc 2016; 248:1112-4. [PMID: 27135663 DOI: 10.2460/javma.248.10.1112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Abstract
Bacteria occur ubiquitously in nature and are broadly relevant throughout the food supply chain, with diverse and variable tolerance levels depending on their origin, biological role, and impact on the quality and safety of the product as well as on the health of the consumer. With increasing knowledge of and accessibility to the microbial composition of our environments, food supply, and host-associated microbiota, our understanding of and appreciation for the ratio of beneficial to undesirable bacteria are rapidly evolving. Therefore, there is a need for tools and technologies that allow definite, accurate, and high-resolution identification and typing of various groups of bacteria that include beneficial microbes such as starter cultures and probiotics, innocuous commensals, and undesirable pathogens and spoilage organisms. During the transition from the current molecular biology-based PFGE (pulsed-field gel electrophoresis) gold standard to the increasingly accessible omics-level whole-genome sequencing (WGS) N-gen standard, high-resolution technologies such as CRISPR-based genotyping constitute practical and powerful alternatives that provide valuable insights into genome microevolution and evolutionary trajectories. Indeed, several studies have shown potential for CRISPR-based typing of industrial starter cultures, health-promoting probiotic strains, animal commensal species, and problematic pathogens. Emerging CRISPR-based typing methods open new avenues for high-resolution typing of a broad range of bacteria and constitute a practical means for rapid tracking of a diversity of food-associated microbes.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695; .,Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
21
|
Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria. Nat Commun 2015; 6:6947. [PMID: 25907309 PMCID: PMC4421842 DOI: 10.1038/ncomms7947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/18/2015] [Indexed: 02/08/2023] Open
Abstract
Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections. Fluoroquinolone antibiotics are widely used to treat serious bacterial infections, but resistance is an increasing problem. Here the authors describe the synthesis and characterization of novel deoxynybomycin derivatives that exhibit activity against fluoroquinolone-resistant infections in an in vivo model.
Collapse
|
22
|
Leite-Martins L, Meireles D, Bessa LJ, Mendes Â, de Matos AJ, Martins da Costa P. Spread of Multidrug-ResistantEnterococcus faecalisWithin the Household Setting. Microb Drug Resist 2014; 20:501-7. [DOI: 10.1089/mdr.2013.0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liliana Leite-Martins
- Veterinary Clinics Department–UPVET, Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Microbiology and Food Technology Laboratory, ICBAS, University of Porto, Porto, Portugal
| | - Diana Meireles
- Microbiology and Food Technology Laboratory, ICBAS, University of Porto, Porto, Portugal
| | - Lucinda J. Bessa
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Ângelo Mendes
- Microbiology and Food Technology Laboratory, ICBAS, University of Porto, Porto, Portugal
| | - Augusto J. de Matos
- Veterinary Clinics Department–UPVET, Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- Microbiology and Food Technology Laboratory, ICBAS, University of Porto, Porto, Portugal
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 2014; 78:74-88. [PMID: 24600041 PMCID: PMC3957734 DOI: 10.1128/mmbr.00039-13] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.
Collapse
|
24
|
Jiménez E, Ladero V, Chico I, Maldonado-Barragán A, López M, Martín V, Fernández L, Fernández M, Álvarez MA, Torres C, Rodríguez JM. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol 2013; 13:288. [PMID: 24325647 PMCID: PMC4029345 DOI: 10.1186/1471-2180-13-288] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have shown that mammalian milk represents a continuous supply of commensal bacteria, including enterococci. The objectives of this study were to evaluate the presence of enterococci in milk of different species and to screen them for several genetic and phenotypic traits of clinical significance among enterococci. Results Samples were obtained from, at least, nine porcine, canine, ovine, feline and human healthy hosts. Enterococci could be isolated, at a concentration of 1.00 × 102 -1.16 × 103 CFU/ml, from all the porcine samples and, also from 85, 50, 25 and 25% of the human, canine, feline and ovine ones, respectively. They were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus durans. Among the 120 initial enterococcal isolates, 36 were selected on the basis of their different PFGE profiles and further characterized. MLST analysis revealed a wide diversity of STs among the E. faecalis and E. faecium strains, including some frequently associated to hospital infections and novel STs. All the E. faecalis strains possessed some of the potential virulence determinants (cad, ccf, cob, cpd, efaAfs, agg2, gelE, cylA, espfs) assayed while the E. faecium ones only harboured the efaAfm gene. All the tested strains were susceptible to tigecycline, linezolid and vancomycin, and produced tyramine. Their susceptibility to the rest of the antimicrobials and their ability to produce other biogenic amines varied depending on the strain. Enterococci strains isolated from porcine samples showed the widest spectrum of antibiotic resistance. Conclusions Enterococci isolated from milk of different mammals showed a great genetic diversity. The wide distribution of virulence genes and/or antibiotic resistance among the E. faecalis and E. faecium isolates indicates that they can constitute a reservoir of such traits and a risk to animal and human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Juan M Rodríguez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Ciudad Universitaria, Avda, Puerta de Hierro, Madrid s/n, 28040, Spain.
| |
Collapse
|