1
|
Pimentel VR, Soares FS, Andrade LF, Vespoli LDS, Leandro MR, Moreira JR, Silveira V, de Souza Filho GA. Cobalt-induced stress reveals a prominent role of CzcC on the proteomic profile of Gluconacetobacter diazotrophicus PAL5. J Appl Microbiol 2025; 136:lxaf113. [PMID: 40402853 DOI: 10.1093/jambio/lxaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/08/2025] [Accepted: 05/06/2025] [Indexed: 05/09/2025]
Abstract
AIMS Heavy metal accumulation in agricultural areas is a global environmental problem that affects microorganisms and plants, with serious implications for human health. This study aimed to investigate the molecular responses of the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5 to cobalt stress. METHODS AND RESULTS We evaluated bacterial growth and cell viability under cobalt stress and performed comparative proteomic and reverse genetics analyses. Cobalt significantly inhibited bacterial growth but did not cause cell death. Proteomic analysis in the presence of 2.5 mmol l-1 CoCl2, which caused ∼50% growth inhibition, revealed the induction of pathways related to iron uptake, carbohydrate metabolism, amino acid metabolism, quality control, and efflux. Knockout mutants for genes involved in these pathways (∆tbdR, ∆zwf, ∆pdhB, ∆argH, and ∆czcC) confirmed the essential role of the CzcC efflux system in cobalt tolerance. CONCLUSIONS Cobalt stress triggers molecular responses in G. diazotrophicus PAL5, with efflux systems playing a crucial role in stress tolerance.
Collapse
Affiliation(s)
- Vivian Ribeiro Pimentel
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Fabiano Silva Soares
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Leandro Fernandes Andrade
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Luciano de Souza Vespoli
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Mariana Ramos Leandro
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Júlia Rosa Moreira
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia (Unidade de Biologia Integrativa, Setor de Genômica e Proteômica), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| |
Collapse
|
2
|
Jia J, Nie H. Pathological and miRNA-mRNA Analyses Provide New Insights into the Immune Response of Clams to Vibrio Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:76. [PMID: 40266414 DOI: 10.1007/s10126-025-10454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Manila clam plays a crucial role in China's marine aquaculture industry. However, frequent vibriosis outbreaks severely hinder sustainable and healthy development of the shellfish aquaculture industry. This study indicated markedly decreased clam survival rates after 48 h of Vibrio alginolyticus challenge. Gill and hepatopancreas damage was investigated through histological observation. The activity of lysozyme in the gills and hepatopancreas peaked at 12 and 24 h, respectively. V. alginolyticus showed a maximum bacterial load in the gills and hepatopancreas at 12 and 24 h, respectively. Additionally, transcriptome sequencing of hepatopancreas revealed ten differentially expressed miRNAs in Va and Cn after 48 h infection with V. alginolyticus, corresponding to 100 target genes, with eight upregulated and two downregulated DE miRNAs. Gene ontology (GO) enrichment analysis identified 50 known miRNAs and 111 novel miRNAs, thereby predicting a total of 1840 target genes. KEGG analysis revealed significant changes in multiple signaling pathways, involving lysosomes, apoptosis, amino acid metabolism, and endocytosis, in response to V. alginolyticus stimulation. This study provided new information regarding the immune regulation mechanisms of R. philippinarum in response to V. alginolyticus stress.
Collapse
Affiliation(s)
- Jianxin Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Jia J, Nie H. Integrated microRNA study and pathological analysis provides new insights into the immune response of Ruditapes philippinarum under Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105270. [PMID: 39306216 DOI: 10.1016/j.dci.2024.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Manila clam (Ruditapes philippenarum) is an important shellfish aquaculture product. The large-scale breeding of clams is often affected by V. anguillarum and causes large-scale death. However, the pathogenesis, immune response and metabolic pathway of V. anguillarum are still unclear. In this study, we found that the bacterial load in the hepatopancreas of R. philippinarum peaked at 48 h after V. anguillarum infection, and then gradually decreased, while the activity of lysozyme reached the peak at 12 h. Tissue section observation reveals that the infected hepatopancreas cells lost normal structure or necrosis. Additionally, six small RNA libraries were constructed using hepatopancreas of clams. A total of 15 differentially expressed (DE) microRNA (miRNA) were identified at 48 h after V. anguillarum infection, including 8 upregulated and 7 downregulated miRNAs. GO and KEGG enrichment results indicated the prediction of 48 known miRNAs and 127 new miRNAs, with functional annotation suggests that endocytosis pathway and bacterial recognition proteins may play key roles in immune response. The sequencing results were basically consistent with the qRT-PCR validation, indicating the accuracy of the data. This study provides a new idea to explore the immune regulation mechanism of shellfish after V. anguillarum infection, which brings important reference significance for modern immunological research.
Collapse
Affiliation(s)
- Jianxin Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Liu H, Lei H, Cao J, Xie Z, Shi Y, Zhao Y. AcfA Regulates the Virulence and Cell Envelope Stress Response of Vibrio parahaemolyticus. Microorganisms 2024; 13:7. [PMID: 39858775 PMCID: PMC11767970 DOI: 10.3390/microorganisms13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, ΔacfA, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the acfA gene, and the complementary strain acfA+ were constructed to decipher the function of AcfA in V. parahaemolyticus. The deletion of acfA had no effect on bacterial growth but resulted in a significant reduction in biofilm formation, hemolytic activity, mucus adhesion, and the accumulated mortality of zebrafish, compared to the wild-type strain and the complementary strain acfA+. Additionally, AcfA was involved in adapting to stressors, such as H2O2, EDTA, and acid, in V. parahaemolyticus. Furthermore, RNA-Seq transcriptome analysis was conducted to identify global gene transcription alterations resulting from deletion of the acfA gene. A total of 416 differentially expressed genes were identified in the ΔacfA vs. wild-type comparison, with 238 up-regulated genes and 178 down-regulated genes. The expression of genes associated with the type III secretion system, type VI secretion system, and oligopeptide permeases system were significantly reduced, and yet the expression of genes associated with cell envelope biosynthesis and response regulation system were enhanced dramatically in the absence of the acfA gene compared to the wild-type strain. These findings suggest that AcfA may play a role in the overall success of pathogenesis and the cell envelope stress response of V. parahaemolyticus.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Huayu Lei
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Juanjuan Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Zhaobang Xie
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yile Shi
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| |
Collapse
|
5
|
Zhu Z, Xu X, Huang J, Xu G, Liu S, Hong F, Chen Y, Yi X, Li H, Li J. Transcriptomic analysis of Vibrio alginolyticus challenged by Rhizoma coptidis reveals mechanisms of virulence genes. Gene 2024; 905:148188. [PMID: 38278336 DOI: 10.1016/j.gene.2024.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Rhizoma coptidis, a Chinese herbal medicine widely used to treat various bacterial infections, has the potential to develop antibiotic substitutes to overcome the drug resistance of Vibrio alginolyticus. To study the inhibitory effect of R. coptidis on V. alginolyticus, we sequenced the transcriptomes of three groups of samples of wild-type V. alginolyticus (CK) and V. alginolyticus, which were stressed by 5 mg/mL R. coptidis for 2 h (RC_2 h) and 4 h (RC_4 h). CK was compared with RC_2 h and RC_4 h, respectively, and a total of 1565 differentially expressed genes (DEGs) (988 up-regulated and 577 down-regulated) and 1737 DEGs (1152 up-regulated and 585 down-regulated) were identified. Comparing RC_2 h with RC_4 h, 156 DEGs (114 up-regulated and 42 down-regulated) were identified. The ability of biofilm formation and motility of V. alginolyticus altered upon with different concentrations of R. coptidis. Interestingly, relative expression patterns of virulence genes appeared statistically significantly varied, upon different concentrations of R. coptidis extract. DEGs were annotated to the Gene Ontology (GO) database for function enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the results showed that the main enriched pathways, was those related to the virulence of V. alginolyticus. This study provides a new perspective for understanding the complex pathogenic mechanism of V. alginolyticus. R. coptidis could potnetially be used as alternative or complimnetary to antibiotics to treat infections after further research.
Collapse
Affiliation(s)
- Zhiqin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd, China.
| | - Jiangyuan Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - ShiChao Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Fei Hong
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Yunong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Jun Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
6
|
Wang J, Xiu L, Qiao Y, Zhang Y. Virulence regulation of Zn2+ uptake system znuABC on mesophilic Aeromonas salmonicida SRW-OG1. Front Vet Sci 2023; 10:1172123. [PMID: 37065252 PMCID: PMC10090552 DOI: 10.3389/fvets.2023.1172123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Psychrophilic Aeromonas salmonicida could not grow above 25°C and therefore thought unable to infect mammals and humans. In our previous study, a mesophilic A. salmonicida SRW-OG1 was isolated from Epinephelus coioides with furunculosis. Through the analysis of preliminary RNA-seq, it was found that the Zn2+ uptake related genes znuA, znuB and znuC might be involved in the virulence regulation of A. salmonicida SRW-OG1. Therefore, the purpose of this study was to explore the effect of znuABC silencing on the virulence regulation of A. salmonicida SRW-OG1. The results showed that the growth of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains was severely restricted under the Fe2+ starvation, but surprisingly there was no significant difference under the Zn2+ restriction. In the absence of Zn2+ and Fe2+, the expression level of znuABC was significantly increased. The motility, biofilm formation, adhesion and hemolysis of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains were significantly reduced. We also detected the expression of znuABC under different growth periods, temperatures, pH, as well as Cu2+ and Pb2+ stresses. The results showed that znuABC was significantly up-regulated in the logarithmic phase and the decline phase of A. salmonicida. Interestingly, the trend of expression levels of the znuABC at 18, 28, and 37°C was reversed to another Zn2+ uptake related gene zupT. Taken together, these indicated that the znuABC was necessary for A. salmonicida SRW-OG1 pathogenicity and environmental adaptability, and was cross regulated by iron starvation, but it was not irreplaceable for A. salmonicida SRW-OG1 Zn2+ uptake in the host.
Collapse
Affiliation(s)
- Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lijun Xiu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Beihai, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- *Correspondence: Youyu Zhang
| |
Collapse
|
7
|
Nie W, Chen X, Tang Y, Xu N, Zhang H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front Bioeng Biotechnol 2022; 10:1066799. [PMID: 36466329 PMCID: PMC9712207 DOI: 10.3389/fbioe.2022.1066799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
Collapse
Affiliation(s)
| | | | | | | | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
9
|
Zhou Y, Kong Q, Zhao X, Lin Z, Zhang H. Dynamic changes in the microbial community in the surface seawater of Jiaozhou Bay after crude oil spills: An in situ microcosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119496. [PMID: 35594998 DOI: 10.1016/j.envpol.2022.119496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The changes in the composition and structure of microbial communities in Jiaozhou Bay are strongly affected by marine oil pollution, but the outcomes of the microbial responses and effects of dispersant application remain unclear. Herein, we performed an in situ microcosm study to investigate the response of the indigenous microbial community under crude oil alone and combined oil and dispersant treatment in the surface seawater of a semi-enclosed marine area of Jiaozhou Bay. The dynamics of the bacterial classification based on 16s rDNA sequencing were used to assess the changes with the crude oil concentration, dispersant use, and time. The crude oil resulted in a high abundance of the genera Pseudohongiella, Cycloclasticus, Marivita, and C1-B045 from the Gammaproteobacteria and Alphaproteobacteria classes, suggesting for hydrocarbon degradation. However, the dispersant treatment was more advantageous for Pacificibacter, Marivita, and Loktanella. Besides accelerating the rate of bacterial community succession, the dispersants had significantly stronger effects on the structure of the bacterial community and the degradation functions than the oil. A higher dose of oil exposure corresponded to fewer dominant species with a high relative abundance. Our study provides information for screening potential degradation bacteria and assessing the risks that oil spills pose to marine ecosystems.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China.
| |
Collapse
|
10
|
Qi X, Xu X, Li H, Pan Y, Katharine Kraco E, Zheng J, Lin M, Jiang X. fliA, flrB, and fliR regulate adhesion by controlling the expression of critical virulence genes in Vibrio harveyi. Gene 2022; 839:146726. [PMID: 35835408 DOI: 10.1016/j.gene.2022.146726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Bacteria adhesion to fish mucus is a crucial virulence mechanism. As the initial step of bacterial infection, adhesion is impacted by bacterial motility and environmental conditions. However, its molecular mechanism is yet unclear. In this study, a significant decrease in gene expression of adhesion-deficient Vibrio harveyi was observed when the bacteria were subjected by Cu2+(50 mg/L), Pb2+(100 mg/L), Hg2+(25 mg/L), and Zn2+(50 mg/L). The genes fliA, fliR, and flrB were responsible for flagellation; being crucial for adhesion, these genes were identified and silenced via RNAi. After silencing of these genes by RNAi technology, the ability of adhesion, biofilm formation, motility, and flagella synthesis of V. harveyi were considerably reduced. Compared with the control group, it was observed that the expression levels of fliS, fliD, flgH, and flrC were significant down-regulated in fliR-RNAi, flrB-RNAi, and fliA-RNAi. This data indicates that the expression levels of most virulence genes are affected by fliA, fliR, and flrB. Also, the expression of fliA, fliR, and flrB can be influenced by the salinity, temperature, and pH. The results show that: (1) fliA, fliR, and flrB have important roles in the adhesion of V. harveyi; (2) fliA, fliR, and flrB can regulate bacterial adhesion by affecting its motility, and biofilm formation; (3) fliA, fliR, and flrB can regulate adhesion ability of V. harveyi in different environments.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xiaojin Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd., China; School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA.
| | - Huiyao Li
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China
| | | | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xinglong Jiang
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
11
|
Xu X, Li H, Qi X, Chen Y, Qin Y, Zheng J, Jiang X. cheA, cheB, cheR, cheV, and cheY Are Involved in Regulating the Adhesion of Vibrio harveyi. Front Cell Infect Microbiol 2021; 10:591751. [PMID: 33614522 PMCID: PMC7887938 DOI: 10.3389/fcimb.2020.591751] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Diseases caused by Vibrio harveyi lead to severe economic losses in the aquaculture industry. Adhesion is an important disease-causing factor observed in bacteria with chemotactic activity. In our study, we measured the adhesion of V. harveyi by subjecting the bacteria to stress using Cu2+, Pb2+, Hg2+, and Zn2+. The genes responsible for chemotaxis (cheA, cheB, cheR, cheV, and cheY), which are also crucial for adhesion, were identified and silenced via RNAi. We observed that a decrease in chemotactic gene expression reduced the ability of the organism to demonstrate adhesion, motility, chemotaxis, and biofilm formation. Upon comparing the cheA-RNAi bacteria to the wild-type strain, we observed that the transcriptome of V. harveyi was significantly altered. Additionally, the expression of key genes and the adhesion ability were affected by the pH (pH of 5, 6, 7, 8, and 9), salinity (NaCl at concentrations of 0.8, 1.5, 2.5, 3.5, or 4.5%), and temperature (4, 15, 28, 37, and 44°C) of the medium. Based on these results, the following conclusions were made: (1) The chemotactic genes cheA, cheB, cheR, cheV, and cheY may regulate the adhesion ability of V. harveyi by affecting bacterial motility, and participate in the regulation of adhesion at different temperatures, salinities, and pH values; (2) stable silencing of cheA could alter the transcriptional landscape of V. harveyi and regulate the expression of genes associated with its adhesion mechanisms.
Collapse
Affiliation(s)
- Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou, China
| | - Huiyao Li
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Xin Qi
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Yunong Chen
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Xinglong Jiang
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| |
Collapse
|
12
|
He R, Zhao L, Xu X, Zheng W, Zhang J, Zhang J, Yan Q, Huang L. Aryl hydrocarbon receptor is required for immune response in Epinephelus coioides and Danio rerio infected by Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2020; 97:564-570. [PMID: 31891808 DOI: 10.1016/j.fsi.2019.12.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor that responds to environmental chemicals, has been recently found to be closely associated with immune response in mammals. Pseudomonas plecoglossicida (P. plecoglossicida) is a temperature-dependent bacterial pathogen of visceral white spot disease in fish. Using dual RNA-seq, we previously evaluated the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in the spleen of Epinephelus coioides at different time points after infection with P. plecoglossicida. In the present study, the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in different organs of E. coioides and Danio rerio showed similar trends after being infected by P. plecoglossicida. It also was noted that liver, intestine, spleen, and heart were the most obviously affected organs, and ahr2 particularly showed a dramatically increase in the spleen. Subsequently, macrophages of E. coioides were isolated, and then infected by P. plecoglossicida, followed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, which revealed that the expression level of ahr1a in macrophages was significantly down-regulated, while expression levels of ahr1b, ahr2 and cyp1a were noticeably up-regulated. Eventually, it was noted that ahr1b and ahr2 were knocked-down in macrophages, and intracellular survival rate and immune escape rate of P. plecoglossicida were markedly improved. Taken together, ahr1a, ahr1b, ahr2 and cyp1a participate in the immune response to P. plecoglossicida in different organs of fish, while ahr1b and ahr2 may play pivotal roles in the immune response of spleen and macrophages.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
13
|
Wang L, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Zhang J, Yan Q. Dual RNA-seq uncovers the immune response of Larimichthys crocea to the secY gene of Pseudomonas plecoglossicida from the perspective of host-pathogen interactions. FISH & SHELLFISH IMMUNOLOGY 2019; 93:949-957. [PMID: 31433996 DOI: 10.1016/j.fsi.2019.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative aerobic bacterium that causes high mortality and serious economic losses in some commercial marine fish. Expression of secY was found to be significantly upregulated at 18 °C compared to 28 °C by RNA-seq and qRT-PCR. All five tested recombinant vectors (pCM130/tac + shRNA) significantly reduced secY mRNA levels in P. plecoglossicida. The recombinant vector encoding shRNA-1165 exhibited the best gene-silencing efficiency, 82.4% and was used to create an RNAi strain for further studies. Compared with the wildtype strain, infections of Larimichthys crocea with the RNAi strain resulted in a 2-day delay in onset time and a 35% reduction in mortality, as well as the alleviation of spleen symptoms. The spleens of L. crocea infected by the wild type or RNAi strain of P. plecoglossicida were subjected to dual RNA-seq at 2 dpi. Compared with the wildtype strain, infection of P. plecoglossicida with the RNAi strain resulted in significant changes in the transcriptomes of both host and pathogen. KEGG analysis showed that the complement and coagulation cascade and the Toll-like receptor signalling pathway were the most enriched host pathways. In the pathogen, genes of the "Sec secretion system" were significantly downregulated. This downregulation of "Sec secretion system" genes hindered the secretion of bacterial proteins and reduced the virulence of P. plecoglossicida. Thus, it was easier for L. crocea to clear the RNAi strain of P. plecoglossicida, and the immune response was similarly reduced. The results indicated that secY was a virulence gene of P. plecoglossicida and played roles in the host-pathogen interactions of L. crocea and P. plecoglossicida.
Collapse
Affiliation(s)
- Luying Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yunjia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China.
| |
Collapse
|
14
|
Kang H, Liang QJ, Hu R, Li ZH, Liu Y, Wang WN. Integrative mRNA-miRNA interaction analysis associated with the immune response of Epinephelus coioddes to Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:404-412. [PMID: 31077847 DOI: 10.1016/j.fsi.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a kind of small non-coding RNAs that have been reported to play a vital role in mediating host-pathogen interactions. High-throughput sequencing technology was applied to identify and illuminate mRNAs and miRNAs from grouper infected with Vibrio alginolyticus. The KEGG pathway enrichment analysis showed that the most significate DEGs are associated with Toll-like receptor signaling pathway and NOD-like receptor signaling pathway. We obtained 374 known miRNAs and 116 novel miRNAs. During them, there are 31 up-regulated miRNAs and 93 down-regulated miRNAs. miRNA-mRNA GO and KEGG analysis show that there are 90 miRNAs associated with the immune system. The target genes of immune-related miRNAs (miR-142, miR-146, miR-150, miR-155, miR-203, miR-205, miR-24, miR-31) and genes (CD80, IL-2, AMPK, PI3K) in Epinephelus coioddes were predicted and validated. This study provides an opportunity to further understanding the molecular mechanisms especially the immune system of miRNA regulation in Epinephelus coioddes host-pathogen interactions.
Collapse
Affiliation(s)
- Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Rui Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhong-Hua Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
15
|
Wang S, Yan Q, Zhang M, Huang L, Mao L, Zhang M, Xu X, Chen L, Qin Y. The role and mechanism of icmF in Aeromonas hydrophila survival in fish macrophages. JOURNAL OF FISH DISEASES 2019; 42:895-904. [PMID: 30919989 DOI: 10.1111/jfd.12991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF-RNAi was constructed by shRNA and RT-qPCR confirmed the expression of icmF was down-regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF-RNAi. The intracellular survival rate of the wild-type strain was 92.3%, while the survival rate of icmF-RNAi was only 20.58%. The escape rate of the wild-type strain was 20%, while that of the icmF-RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2 O2 . The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence-related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.
Collapse
Affiliation(s)
- Suyun Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Meimei Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Leilei Mao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Liwei Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
16
|
Huang L, Zhao L, Liu W, Xu X, Su Y, Qin Y, Yan Q. Dual RNA-Seq Unveils Pseudomonas plecoglossicida htpG Gene Functions During Host-Pathogen Interactions With Epinephelus coioides. Front Immunol 2019; 10:984. [PMID: 31130962 PMCID: PMC6509204 DOI: 10.3389/fimmu.2019.00984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas plecoglossicida is a temperature-dependent opportunistic pathogen which is associated with a variety of diseases in fish. During the development of "white nodules" disease, the expression of htpG in P. plecoglossicida was found to be significantly up-regulated at its virulent temperature of 18°C. The infection of htpG-RNAi strain resulted in the onset time delay, reduction in mortality and infection symptoms in spleen of Epinephelus coioides, and affected the bacterial tissue colonization. In order to reveal the effect of htpG silencing of P. plecoglossicida on the virulence regulation in P. plecoglossicida and immune response in E. coioides, dual RNA-seq was performed and a pathogen-host integration network was constructed. Our results showed that infection induced the expression of host genes related to immune response, but attenuated the expression of bacterial virulence genes. Novel integration was found between host immune genes and bacterial virulence genes, while IL6, IL1R2, IL1B, and TLR5 played key roles in the network. Further analysis with GeneMANIA indicated that flgD and rplF might play key roles during the htpG-dependent virulence regulation, which was in accordance with the reduced biofilm production, motility and virulence in htpG-RNAi strain. Meanwhile, IL6 and IL1B were found to play key roles during the defense against P. plecoglossicida, while CELA2, TRY, CPA1, CPA2, and CPB1 were important targets for P. plecoglossicida attacking to the host.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
17
|
Huang L, Guo L, Xu X, Qin Y, Zhao L, Su Y, Yan Q. The role of rpoS in the regulation of Vibrio alginolyticus virulence and the response to diverse stresses. JOURNAL OF FISH DISEASES 2019; 42:703-712. [PMID: 30811044 DOI: 10.1111/jfd.12972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Vibrio alginolyticus is a leading aquatic pathogen, causing huge losses to aquaculture. rpoS has been proven to play a variety of important roles in stress response and virulence in several bacteria. In our previous study, upon treatment with Cu2+ , Pb2+ , Hg2+ and low pH, the expression levels of rpoS were downregulated as assessed by RNA-seq, while impaired adhesion ability was observed, indicating that rpoS might play roles in the regulation of adhesion. In the present study, the RNAi technology was used to knockdown rpoS in V. alginolyticus. In comparison with wild-type V. alginolyticus, RNAi-treated bacteria showed significantly impaired abilities of adhesion, growth, haemolytic, biofilm production, movement and virulence. Meanwhile, alterations of temperature, salinity, pH and starvation starkly affected rpoS expression. The present data suggested that rpoS is a critical regulator of virulence in V. alginolyticus; in addition, rpoS regulates bacterial adhesion in response to temperature, pH and nutrient content changes. These are helpful to explore its pathogenic mechanism and provide reference for disease control.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lina Guo
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
18
|
Huang L, Zhang Y, He R, Zuo Z, Luo Z, Xu W, Yan Q. Phenotypic characterization, virulence, and immunogenicity of Pseudomonas plecoglossicida rpoE knock-down strain. FISH & SHELLFISH IMMUNOLOGY 2019; 87:772-777. [PMID: 30776544 DOI: 10.1016/j.fsi.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida, a temperature dependent bacterial pathogen in fish, expresses rpoE gene that is sensitive to temperature and probably critical for pathogen virulence and disease development. In this study, the rpoE silence strain rpoE-RNAi-1 was constructed by gene knock-down. The rpoE-RNAi-1 displayed significant changes in biofilm formation, swarming motility, adhesion and virulence. Meanwhile, vaccination of grouper with rpoE-RNAi-1 led to a relative percent survival (RPS) value of 85% after challenged with the wild-type P. plecoglossicida. qRT-PCR assays showed that vaccination with rpoE-RNAi-1 enhanced the expression of immune-related genes, including MHC-I, MHC-II, IgM, and IL-1β, indicating that it was able to induce humoral and cell-mediated immune response in grouper. These results validated the possibility of rpoE as a potential target for constructing P. plecoglossicida live attenuated vaccine.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, PR China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Zhenghong Zuo
- School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Zhuhua Luo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
19
|
Huang L, Zuo Y, Jiang Q, Su Y, Qin Y, Xu X, Zhao L, Yan Q. A metabolomic investigation into the temperature-dependent virulence of Pseudomonas plecoglossicida from large yellow croaker (Pseudosciaena crocea). JOURNAL OF FISH DISEASES 2019; 42:431-446. [PMID: 30659613 DOI: 10.1111/jfd.12957] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida is associated with multiple fish diseases, and temperature is one of the most important environmental factors related to its outbreak. To elucidate the influence of temperature variation on the pathogen, the global metabolomics of P. plecoglossicida (NZBD9) were analysed at the virulent (18°C) and avirulent (12°C and 28°C) temperatures. The result showed that the levels of Phosphoric acid, Tyrosine, Spermidine and Sucrose were significantly reduced,while Itaconic acid, Glucaric acid and Isomaltose were increased in P. plecoglossicida at 18°C. These metabolic adjustments assist P. plecoglossicida to survive in adverse environments, proliferate in the host, colonize and resist host immune clearance during the initial steps of infection. The results suggested that L321_03626 and L321_18122 genes played a key role in the regulation of these metabolic adaptions and thus regulated P. plecoglossicida virulence at virulent temperature, which was proved by further gene silencing and artificial infection. The present study, for the first time, determines the P. plecoglossicida metabolomic responses to temperature variation, which is helpful to explore its pathogenic mechanism and provides reference for disease control.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
20
|
Huang L, Huang L, Zhao L, Qin Y, Su Y, Yan Q. The regulation of oxidative phosphorylation pathway on Vibrio alginolyticus adhesion under adversities. Microbiologyopen 2019; 8:e00805. [PMID: 30767412 PMCID: PMC6692554 DOI: 10.1002/mbo3.805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/03/2023] Open
Abstract
Vibrio alginolyticus is one of the most important pathogens in mariculture and leading to heavy losses. After treatment with Cu2+, Pb2+, and low pH, the expression of oxidative phosphorylation pathway genes, including coxA, coxB, coxC, ccoN, ccoO, and ccoQ, was found commonly downregulated by RNA‐seq as well as quantitative real‐time PCR. RNAi significantly reduced the expression of coxA, coxB, coxC, ccoN, ccoO, and ccoQ in V. alginolyticus. Compared with the wild‐type strain, the adhesion abilities of RNAi strains of V. alginolyticus were significantly impaired, as well as their cytochrome C oxidase activity. ccoQ appeared to be more important in the regulation of bacterial adhesion in these target genes, while ccoO was relatively weak in the regulation of the adhesion. Meanwhile, the changes of temperature, salinity, pH, and starvation affected coxA, coxB, coxC, ccoN, ccoO, and ccoQ expression remarkably. These findings indicated that: the oxidative phosphorylation pathway is a critical regulator of adhesion in V. alginolyticus; coxA, coxB, coxC, ccoN, ccoO, and ccoQ regulate the bacterial adhesion in response to environmental changes such as temperature, salinity, pH, and starvation.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Zuo Y, Zhao L, Xu X, Zhang J, Zhang J, Yan Q, Huang L. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis. Emerg Microbes Infect 2019; 8:1604-1618. [PMID: 31711375 PMCID: PMC6853220 DOI: 10.1080/22221751.2019.1687261] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
The incidence of Vibrio alginolyticus infections has increased in recent years due to the influence of climate change and rising sea temperature. Vibrio virulence regulatory RNA 1 (Vvrr1) is a newly found noncoding RNA (ncRNA) predicted to be closely related to the adhesion ability of V. alginolyticus based on the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1-overexpressing strains and using the proteome sequencing technology. Pyruvate kinase I (pykF) gene was predicted to be a chief target gene of Vvrr1 involved in virulence regulation. The adhesion ability, biofilm formation and virulence were significantly reduced in the Vvrr1-overexpressing and the pykF-silenced strain compared with the wild strains. Similar to the overexpression of Vvrr1, the silencing of pykF also reduced the expression level of virulence genes, such as ndk, eno, sdhB, glpF, and cysH. Meanwhile, by constructing the "pykF-GFP" fusion expression plasmid and using the GFP reporter gene analysis in Escherichia coli, the fluorescence intensity of the strain containing Vvrr1 whole ncRNA sequence vector was found to be significantly weakened. These indicated that Vvrr1 participated in the virulence regulation mechanism of V. alginolyticus by interacting with the virulence gene pykF.
Collapse
Affiliation(s)
- Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| |
Collapse
|
22
|
Huang L, Xu W, Su Y, Zhao L, Yan Q. Regulatory role of the RstB-RstA system in adhesion, biofilm production, motility, and hemolysis. Microbiologyopen 2018; 7:e00599. [PMID: 29573209 PMCID: PMC6182747 DOI: 10.1002/mbo3.599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 01/19/2023] Open
Abstract
For infection, initial invasion of the host is of great importance, with adhesion playing a critical role. We previously demonstrated rstA and rstB are remarkably downregulated in Vibrio alginolyticus cultured under heavy metal and acidic stresses, with impaired adhesion, suggesting that rstA and rstB might be involved in adhesion regulation. The present study showed that rstA and rstB silencing resulted in impaired adhesion, biofilm production, motility, hemolysis, and virulence. Meanwhile, changes of temperature, starvation, and pH remarkably affected rstA and rstB expression. These findings indicated that (1) rstA and rstB are critical regulators of adhesion in V. alginolyticus; (2) rstA and rstB have remarkable effects on biofilm production, motility, hemolysis, and virulence in V. alginolyticus; (3) rstA and rstB modulate adhesion in response to environmental changes of temperature, pH, and starvation.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Huang L, Wang L, Lin X, Su Y, Qin Y, Kong W, Zhao L, Xu X, Yan Q. mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. Microbiologyopen 2017; 6:e00517. [PMID: 28744982 PMCID: PMC5727358 DOI: 10.1002/mbo3.517] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
Adhesion is a key virulence factor of pathogens and can be affected by the environment. Our previously research with RNA-seq indicated that mcp, aer, cheB, and cheV might play roles in the regulation of adhesion in Vibrio alginolyticus (ND-01). In order to determine whether and how environmental factors affect adhesion through these genes, gene silencing was performed followed by quantitative real-time PCR (qRT-PCR), RNAi, transmission electron microscopy, and adhesion, capillary, and motility assays to verify how these genes influence adhesion. Silencing these genes led to deficiencies in adhesion, chemotaxis, flagellar assembly, and motility. The expression levels of cheA, cheW, and cheY, which are important genes closely related to the functions of mcp, aer, cheV, and cheB, were significantly downregulated in all of the RNAi groups. The expression of mcp, aer, cheV, and cheB under different gradients of temperature, pH, and salinity and after starvation for various durations was also detected, which showed that these genes were sensitive to certain environmental stresses, particularly pH and starvation. Our results indicated that mcp, aer, cheB, and cheV: (1) are necessary for ND-01 adhesion; (2) play key roles in the bacterial chemotaxis pathway by controlling the expression of downstream genes; (3) might affect adhesion by impacting motility, though motility is not the only route through which adhesion is affected; and (4) contribute to the regulation of ND-01 adhesion in natural environments with different temperatures, pH levels, and salinities as well as after various starvation periods.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Lu Wang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiangzhi Lin
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Yongquan Su
- College of Ocean & Earth SciencesXiamen UniversityXiamenFujianChina
| | - Yingxue Qin
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Wendi Kong
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Lingmin Zhao
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiaojin Xu
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Qingpi Yan
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| |
Collapse
|
24
|
Guo L, Huang L, Su Y, Qin Y, Zhao L, Yan Q. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen 2017; 7:e00551. [PMID: 29057613 PMCID: PMC5911994 DOI: 10.1002/mbo3.551] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/26/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022] Open
Abstract
Vibrio alginolyticus caused great losses to aquaculture. Adhesion is an important virulence factor of V. alginolyticus. In this study, the relationship between V. alginolyticus adhesion and type II secretion system genes (secA, secD, secF, yajC, and yidC) was determined using gene silencing, qRT‐PCR and in vitro adhesion assay. The results showed that the expression of target genes and the bacterial adhesion exhibited significant decreases after transient gene silencing and stable gene silencing, which indicated that secA, secD, secF, yajC, and yidC played roles in the bacterial adhesion of V. alginolyticus. The expression of secA, secD, secF, yajC, and yidC were significantly influenced by temperature, salinity, pH and starvation. The results indicated that the expression of secA, secD, secF, yajC, and yidC were sensitive to different environmental factors, whereas environmental factors can affect V. alginolyticus adhesion via the expression of secA, secD, secF, yajC, and yidC.
Collapse
Affiliation(s)
- Lina Guo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
25
|
Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen 2017; 6. [PMID: 28714216 PMCID: PMC5635161 DOI: 10.1002/mbo3.511] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023] Open
Abstract
Vibrio alginolyticus has been associated with several diseases of cultivated marine animals, and has led to considerable economic losses. The oligopeptide permease (Opp) has been proven to play a variety of important roles in nutrition and virulence in several bacteria. In our previous research, the opp gene cluster was identified in Vibrio alginolyticus with transcriptome sequence, which also indicated that the Opp system might play roles in the regulation of adhesion. In this study, the relationship between V. alginolyticus virulence and the opp gene cluster was determined using gene silencing followed by RT‐qPCR, in vitro adhesion assay, growth curves detection in the presence of glutathione (GSH) as a toxic substrate, hemolysis assay, biofilm assay, and artificial infection. Silencing these genes led to deficiencies in adhesion, peptide internalization, biofilm production, hemolytic activity, and virulence. The expression levels of hapr, hapa, tlh, and hlya, which are important genes closely related to the hemolytic activity of Vibrio, were significantly downregulated in all of the RNAi groups. Furthermore, the expression of oppA, oppB, oppC, oppD, and oppF was significantly influenced by temperature, starvation, and pH. These results indicate that (1) oppABCDF contributed in multistep of V. alginolyticus pathogenesis, including adhesion, biofilm production, and hemolytic activity; (2) oppABCDF was sensitive to different temperatures, changes in pH, and increased starvation time.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
26
|
Huang Y, Cai S, Pang H, Jian J, Wu Z. Immunogenicity and efficacy of DNA vaccine encoding antigenic AcfA via addition of the molecular adjuvant Myd88 against Vibrio alginolyticus in Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2017; 66:71-77. [PMID: 28487211 DOI: 10.1016/j.fsi.2017.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
DNA vaccines had been widely used against microbial infection in animals. The use of molecular adjuvants to improve the immunogenicity of DNA vaccines has been increasingly studied in recent years. MyD88 is one of the adapter molecules to activate the signaling cascades and produces inflammatory mediators, and its immunological role and adjuvant potential which had been proved in mammals were rarely reported in fish species. In this study, plasmid pcMyD88 was constructed and the capacity of MyD88 as molecular adjuvant was explored by co-injecting with a DNA vaccine encoding AcfA against Vibrio alginolyticus infection in orange spotted grouper. The results suggested that it needed at least 7 days to transported DNA vaccine pcacfA or molecular adjuvant pcMyD88 from the injected muscle to kidney and spleens and stimulate host's immune system for later protection. The co-injection of pcMyD88 with DNA vaccine pcacfA could increase significantly specific antibody levels and the expression levels of the immune-related genes including MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα. Furthermore, pcMyD88 enhanced the immunoprotection of pcacfA against V. alginolyticus infection, with the significantly higher RPS of 83.3% in pcMyD88 + pcacfA group compared with that of pcacfA alone (73.3%) at challenging test of 10 weeks post vaccination. Together, these results clearly demonstrate that MyD88 is an effective adjuvant for the DNA vaccine pcacfA in orange spotted grouper.
Collapse
Affiliation(s)
- Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China.
| | - Huanying Pang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
27
|
Jiang Q, Chen W, Qin Y, Huang L, Xu X, Zhao L, Yan Q. AcuC, a histone deacetylase, contributes to the pathogenicity of Aeromonas hydrophila. Microbiologyopen 2017; 6. [PMID: 28371510 PMCID: PMC5552924 DOI: 10.1002/mbo3.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica. To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini-Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini-Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184-acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila.
Collapse
Affiliation(s)
- Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenbo Chen
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
28
|
Luo G, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect 2016; 5:e85. [PMID: 27485498 PMCID: PMC5034100 DOI: 10.1038/emi.2016.82] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| |
Collapse
|