1
|
Liu C, Wang R, Ge S, Wang B, Li S, Yan B. Research status and challenges of Mycoplasma pneumoniae pneumonia in children: A bibliometric and visualization analysis from 2011 to 2023. Medicine (Baltimore) 2024; 103:e37521. [PMID: 38489686 PMCID: PMC10939570 DOI: 10.1097/md.0000000000037521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) infections occur in regional outbreaks every 3 to 7 years, lasting up to 2 years. Since this fall, there has been a significant rise in MP infections among children in China, indicating a regional epidemiological trend that imposes an increased national public health burden. To date, bibliometric methods have not been applied to studies on MP infection in children. METHODS We searched for all relevant English publications on MP pneumonia in children published from 2011 to 2023 using Web of Science. Analytical software tools such as Citespace and VOSviewer were employed to analyze the collected literature. RESULTS 993 articles on MP pneumonia in children were published in 338 academic journals by 5062 authors affiliated with 1381 institutions across 75 countries/regions. China led in global productivity with 56.19%. Among the top 10 prolific organizations, 8 were Chinese institutions, with Soochow University being the most active, followed by Capital Medical University and Zhejiang University. Zhimin Chen from Zhejiang University School of Medicine exhibited the highest H-index of 32. Keyword co-occurrence network analysis revealed 7 highly relevant clusters. CONCLUSION The current research hotspots and frontiers in this field are primarily MP pneumonia, refractory MP pneumonia, lactate dehydrogenase, asthma, and biomarker. We anticipate that this work will provide novel insights for advancing scientific exploration and the clinical application of MP pneumonia in children.
Collapse
Affiliation(s)
- Congcong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyi Ge
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binding Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siman Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bohua Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ras TA, Strauss E, Botes A. Evaluating the Genetic Capacity of Mycoplasmas for Coenzyme A Biosynthesis in a Search for New Anti-mycoplasma Targets. Front Microbiol 2021; 12:791756. [PMID: 34987490 PMCID: PMC8721197 DOI: 10.3389/fmicb.2021.791756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoplasmas are responsible for a wide range of disease states in both humans and animals, in which their parasitic lifestyle has allowed them to reduce their genome sizes and curtail their biosynthetic capabilities. The subsequent dependence on their host offers a unique opportunity to explore pathways for obtaining and producing cofactors - such as coenzyme A (CoA) - as possible targets for the development of new anti-mycoplasma agents. CoA plays an essential role in energy and fatty acid metabolism and is required for membrane synthesis. However, our current lack of knowledge of the relevance and importance of the CoA biosynthesis pathway in mycoplasmas, and whether it could be bypassed within their pathogenic context, prevents further exploration of the potential of this pathway. In the universal, canonical CoA biosynthesis pathway, five enzymes are responsible for the production of CoA. Given the inconsistent presence of the genes that code for these enzymes across Mycoplasma genomes, this study set out to establish the genetic capacity of mycoplasmas to synthesize their own CoA de novo. Existing functional annotations and sequence, family, motif, and domain analysis of protein products were used to determine the existence of relevant genes in Mycoplasma genomes. We found that most Mycoplasma species do have the genetic capacity to synthesize CoA, but there was a differentiated prevalence of these genes across species. Phylogenetic analysis indicated that the phylogenetic position of a species could not be used to predict its enzyme-encoding gene combinations. Despite this, the final enzyme in the biosynthesis pathway - dephospho-coenzyme A kinase (DPCK) - was found to be the most common among the studied species, suggesting that it has the most potential as a target in the search for new broad-spectrum anti-mycoplasma agents.
Collapse
Affiliation(s)
| | | | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Hlinkina TV, Kastsiuk SA. Correlation between Nucleotide Substitutions in Glycerol-3-Phosphate Oxidase Gene, the Level of Hydrogen Peroxide Production, and Cytotoxicity of Mycoplasma pneumoniae. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Chernov VM, Chernova OA, Mouzykantov AA, Medvedeva ES, Baranova NB, Malygina TY, Aminov RI, Trushin MV. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol Lett 2019; 365:5057471. [PMID: 30052940 DOI: 10.1093/femsle/fny185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Tatiana Y Malygina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Maxim V Trushin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| |
Collapse
|
5
|
Emerging Antibiotic Resistance in Mycoplasma Microorganisms, Designing Effective and Novel Drugs / Therapeutic Targets: Current Knowledge and Futuristic Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Seybert A, Gonzalez-Gonzalez L, Scheffer MP, Lluch-Senar M, Mariscal AM, Querol E, Matthaeus F, Piñol J, Frangakis AS. Cryo-electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium. Mol Microbiol 2018; 108:319-329. [PMID: 29470847 DOI: 10.1111/mmi.13938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.
Collapse
Affiliation(s)
- Anja Seybert
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Maria Lluch-Senar
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ana M Mariscal
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Franziska Matthaeus
- Faculty of Biological Sciences & FIAS, Goethe University Frankfurt, Ruth-Moufang-Straße 1, Frankfurt 60438, Germany
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
7
|
Jia X, Wang C, Rong Z, Li J, Wang K, Qie Z, Xiao R, Wang S. Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of Mycoplasma pneumoniae infection. RSC Adv 2018; 8:21243-21251. [PMID: 35539903 PMCID: PMC9080884 DOI: 10.1039/c8ra03323d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
We present an attractive model of surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) for the sensitive and accurate detection of Mycoplasma pneumoniae (MP) infection in human serum. The SERS-LFIA strip uses Au@Ag nanoparticles (Au@Ag NPs) loaded with two layers of Raman dye 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) as SERS tags. The advantages of the dual dye-loaded SERS tags (Au/DTNB@Ag/DTNB) are the high sensitivity and the bioconjugation flexibility of the detection antibody. As determined from our SERS-LFIA strip, human IgM was quantified by monitoring the SERS signal on the test line. The limit of detection for human IgM was 0.1 ng mL−1, which was 100 times more sensitive than that by using the colorimetric method. Our assay results for 20 MP-specific IgM positive serum specimens showed 100% accuracy and detection rate, whereas the parallel enzyme-linked immunosorbent assay only showed 85% detection rate. The SERS-LFIA strip also exhibited high specificity and potential clinical applications. Therefore, our SERS-based LFIA strip has strong potential for practical applications in the sensitive and rapid detection of MP. Schematic illustration of quantitative detection of human IgM using SERS-based lateral flow immunoassay.![]()
Collapse
Affiliation(s)
- Xiaofei Jia
- College of Life Sciences & Bio-Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
- Beijing Institute of Radiation Medicine
| | - Chongwen Wang
- College of Life Sciences & Bio-Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
- Beijing Institute of Radiation Medicine
| | - Zhen Rong
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P. R. China
| | - Jian Li
- Chinese PLA General Hospital
- Beijing 100853
- P. R. China
| | - Keli Wang
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P. R. China
| | - Zhiwei Qie
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P. R. China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine
- Beijing 100850
- P. R. China
| | - Shengqi Wang
- College of Life Sciences & Bio-Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
8
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|