1
|
Gios E, Verbruggen E, Audet J, Burns R, Butterbach-Bahl K, Espenberg M, Fritz C, Glatzel S, Jurasinski G, Larmola T, Mander Ü, Nielsen C, Rodriguez AF, Scheer C, Zak D, Silvennoinen HM. Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology. BIOGEOCHEMISTRY 2024; 167:609-629. [PMID: 38707517 PMCID: PMC11068585 DOI: 10.1007/s10533-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 05/07/2024]
Abstract
Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01122-6.
Collapse
Affiliation(s)
- Emilie Gios
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Rachel Burns
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
- Department of Agroecology, Pioneer Center for Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, 8000 Aarhus, Denmark
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Christian Fritz
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stephan Glatzel
- Department of Geography and Regional Research, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerald Jurasinski
- Faculty of Agriculture and Environment, Landscape Ecology and Site Evaluation, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department of Maritime Systems, Faculty of Interdisciplinary Research, University of Rostock, Albert- Einstein-Straße 3, 18059 Rostock, Germany
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Claudia Nielsen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Andres F. Rodriguez
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Clemens Scheer
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
| | - Dominik Zak
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Hanna M. Silvennoinen
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
2
|
Xu G, Li G, Wu J, Ma W, Wang H, Yuan J, Li X. Effects of rainfall amount and frequencies on soil net nitrogen mineralization in Gahai wet meadow in the Qinghai-Tibetan Plateau. Sci Rep 2023; 13:14860. [PMID: 37684356 PMCID: PMC10491659 DOI: 10.1038/s41598-023-39267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/22/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change has led to a significant increase in the frequency of extreme rainfall events in the Qinghai-Tibetan Plateau (QTP), thus potentially increasing the annual rainfall amounts and, consequently, affecting the net soil nitrogen (N) mineralization process. However, few studies on the responses of the soil net N mineralization rates to the increases in rainfall amounts and frequencies in alpine wet meadows have been carried out. Therefore, the present study aims to assess the effects of rainfall frequency and amount changes on the N fixation capacity of wet meadow soils by varying the rainfall frequency and amount in the Gahai wet meadow in the northeastern margin of the QTP during the plant-growing season in 2019. The treatment scenarios consisted of ambient rain (CK) and supplementary irrigation at a rate of 25 mm, with different irrigation frequencies, namely weekly (DF1), biweekly (DF2), every three weeks (DF3), and every four weeks (DF4). According to the obtained results, the increased rainfall frequency and amount decreased the soil mineral N stock and increased the aboveground vegetation biomass (AB) amounts and soil water contents in the wet meadows of the QTP. Ammonium (NH4+-N) and nitrate N (NO3--N) contributed similarly to the mineral N contents. However, the ammonification process played a major role in the soil mineralization process. The effects of increasing rainfall amount and frequency on N mineralization showed seasonal variations. The N mineralization rate showed a single-peaked curve with increasing soil temperature during the rapid vegetation growth phase, reaching the highest value in August. In addition, the N mineralization rates showed significant positive correlations with soil temperatures and NH4+-N contents and a significant negative correlation with AB (P < 0.05). The results of this study demonstrated the key role of low extreme rainfall event frequencies in increasing the net soil N mineralization rates in the vegetation growing season, which is detrimental to soil N accumulation, thereby affecting the effectiveness of soil N contents.
Collapse
Affiliation(s)
- Guorong Xu
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiangqi Wu
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Weiwei Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haiyan Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianyu Yuan
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaodan Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Meier AB, Oppermann S, Drake HL, Schmidt O. The root zone of graminoids: A niche for H2-consuming acetogens in a minerotrophic peatland. Front Microbiol 2022; 13:978296. [PMID: 35992704 PMCID: PMC9391049 DOI: 10.3389/fmicb.2022.978296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of acetogens for H2 turnover and overall anaerobic degradation in peatlands remains elusive. In the well-studied minerotrophic peatland fen Schlöppnerbrunnen, H2-consuming acetogens are conceptualized to be largely outcompeted by iron reducers, sulfate reducers, and hydrogenotrophic methanogens in bulk peat soil. However, in root zones of graminoids, fermenters thriving on rhizodeposits and root litter might temporarily provide sufficient H2 for acetogens. In the present study, root-free peat soils from around the roots of Molinia caerulea and Carex rostrata (i.e., two graminoids common in fen Schlöpnnerbrunnen) were anoxically incubated with or without supplemental H2 to simulate conditions of high and low H2 availability in the fen. In unsupplemented soil treatments, H2 concentrations were largely below the detection limit (∼10 ppmV) and possibly too low for acetogens and methanogens, an assumption supported by the finding that neither acetate nor methane substantially accumulated. In the presence of supplemental H2, acetate accumulation exceeded CH4 accumulation in Molinia soil whereas acetate and methane accumulated equally in Carex soil. However, reductant recoveries indicated that initially, additional unknown processes were involved either in H2 consumption or the consumption of acetate produced by H2-consuming acetogens. 16S rRNA and 16S rRNA gene analyses revealed that potential acetogens (Clostridium, Holophagaceae), methanogens (Methanocellales, Methanobacterium), iron reducers (Geobacter), and physiologically uncharacterized phylotypes (Acidobacteria, Actinobacteria, Bacteroidetes) were stimulated by supplemental H2 in soil treatments. Phylotypes closely related to clostridial acetogens were also active in soil-free Molinia and Carex root treatments with or without supplemental H2. Due to pronounced fermentation activities, H2 consumption was less obvious in root treatments, and acetogens likely thrived on root organic carbon and fermentation products (e.g., ethanol) in addition to H2. Collectively, the data highlighted that in fen Schlöppnerbrunnen, acetogens are associated to graminoid roots and inhabit the peat soil around the roots, where they have to compete for H2 with methanogens and iron reducers. Furthermore, the study underscored that the metabolically flexible acetogens do not rely on H2, potentially a key advantage over other H2 consumers under the highly dynamic conditions characteristic for the root-zones of graminoids in peatlands.
Collapse
Affiliation(s)
- Anja B. Meier
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Sindy Oppermann
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Harold L. Drake
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Oliver Schmidt,
| |
Collapse
|
4
|
Meier AB, Oppermann S, Drake HL, Schmidt O. Organic carbon from graminoid roots as a driver of fermentation in a fen. FEMS Microbiol Ecol 2021; 97:6412523. [PMID: 34718537 DOI: 10.1093/femsec/fiab143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fen Schlöppnerbrunnen is a moderately acidic methane-emitting peatland overgrown by Molinia caerulea and other wetland graminoids (e.g. Carex rostrata). Recently, the accumulation of H2, an indicator for fermentation, was observed with anoxically incubated C. rostrata roots but not with root-free fen soil. Based on this finding, we hypothesized that root-derived organic carbon has a higher capacity to promote fermentation processes than peat organic carbon from root-free fen soil. To address this hypothesis, C. rostrata and M. caerulea roots were anoxically incubated with or without fen soil and the product profiles of root treatments were compared with those of root-free soil treatments. Ethanol, acetate, propionate, butyrate, H2 and CO2 accumulated in root treatments and collective amounts of carbon in accumulating products were 20-200 times higher than those in root-free soil treatments, in which mainly CO2 accumulated. Analyses of 16S rRNA and 16S rRNA gene sequences revealed that Clostridium, Propionispira and Rahnella, representatives of butyrate, propionate and mixed acid fermenters, respectively, were relatively enriched in root treatments. In contrast, differences of the microbial community before and after incubation were marginal in root-free soil treatments. Collectively, these findings supported the assumed stimulatory effect of root-derived organic carbon on fen fermenters.
Collapse
Affiliation(s)
- Anja B Meier
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Sindy Oppermann
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
5
|
Inorganic Nitrogen Production and Removal along the Sediment Gradient of a Stormwater Infiltration Basin. WATER 2021. [DOI: 10.3390/w13030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.
Collapse
|
6
|
Maxwell BM, Birgand F, Schipper LA, Christianson LE, Tian S, Helmers MJ, Williams DJ, Chescheir GM, Youssef MA. Drying-Rewetting Cycles Affect Nitrate Removal Rates in Woodchip Bioreactors. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:93-101. [PMID: 30640347 DOI: 10.2134/jeq2018.05.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Woodchip bioreactors are widely used to control nitrogen export from agriculture using denitrification. There is abundant evidence that drying-rewetting (DRW) cycles can promote enhanced metabolic rates in soils. A 287-d experiment investigated the effects of weekly DRW cycles on nitrate (NO) removal in woodchip columns in the laboratory receiving constant flow of nitrated water. Columns were exposed to continuous saturation (SAT) or to weekly, 8-h drying-rewetting (8 h of aerobiosis followed by saturation) cycles (DRW). Nitrate concentrations were measured at the column outlets every 2 h using novel multiplexed sampling methods coupled to spectrophotometric analysis. Drying-rewetting columns showed greater export of total and dissolved organic carbon and increased NO removal rates. Nitrate removal rates in DRW columns increased by up to 80%, relative to SAT columns, although DRW removal rates decreased quickly within 3 d after rewetting. Increased NO removal in DRW columns continued even after 39 DRW cycles, with ∼33% higher total NO mass removed over each weekly DRW cycle. Data collected in this experiment provide strong evidence that DRW cycles can dramatically improve NO removal in woodchip bioreactors, with carbon availability being a likely driver of improved efficiency. These results have implications for hydraulic management of woodchip bioreactors and other denitrification practices.
Collapse
|
7
|
Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, Müller C, Braker G. Soil Conditions Rather Than Long-Term Exposure to Elevated CO 2 Affect Soil Microbial Communities Associated with N-Cycling. Front Microbiol 2017; 8:1976. [PMID: 29093701 PMCID: PMC5651278 DOI: 10.3389/fmicb.2017.01976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the soil but that spatial heterogeneity over extended periods had shaped microbial communities at particular sites in the field. Hence, microbial community composition and abundance alone cannot explain the functional differences leading to higher N2O emissions under eCO2 and future studies should aim at exploring the active members of the soil microbial community.
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Gerald Moser
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Cécile Guillet
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Claudia Kammann
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,Climate Change Research for Special Crops, Department of Soil Science and Plant Nutrition, Geisenheim University, Geisenheim, Germany
| | - Christoph Müller
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gesche Braker
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,University of Kiel, Kiel, Germany
| |
Collapse
|