1
|
Zhang Z, Jiao J, Zhang J, Tan L, Dong X, Wu R, Wang Q, Wang H, Wang X. Protease Stabilizing Antimicrobial Peptide D1018M Showed Potent Antibiofilm and Anti-Intracellular Bacteria Activity Against MRSA. Foodborne Pathog Dis 2025. [PMID: 40229950 DOI: 10.1089/fpd.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health and food safety, especially when bacteria form biofilms or invade host cells, which may cause recurring infections. A new solution is therefore urgently needed. The antimicrobial peptide innate defense regulator (IDR)-1018 and its derived peptide 1018M showed promising antimicrobial and antibiofilm activities. Nevertheless, their antibacterial efficacy against intracellular MRSA and protease tolerance remains to be promoted. Therefore, we synthesized D-amino acid substitution peptides D1018 and D1018M. The antimicrobial activity against MRSA of these novel peptides was increased by 1-fold (D1018) or remained constant (D1018M) compared with L-amino acids peptides. Their bactericidal mechanisms involve cell wall destruction, membrane penetration, and genomic DNA disruption. As expected, the stability of D1018 and D1018M was increased by 2-32 times against pepsin, trypsin, and cathepsin K. In addition, by D-amino acids substitution, the antibiofilm ability of D1018 was increased by 1.6 times, and the anti-intracellular bacterial activity of D1018M was improved 3.2-5.7 orders of magnitude. These data indicated that D1018M is a potential antimicrobial candidate for recurring MRSA infections.
Collapse
Affiliation(s)
- Zirui Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jian Jiao
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Lian Tan
- Intensive Care Medicine Department, Ningbo Urology and Kidney Disease Hospital, Ningbo, China
| | - Xunxi Dong
- Health Science Center, Ningbo University, Ningbo, China
| | - Runzhe Wu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qiang Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Hao Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Danev N, Poggi JM, Dewever EA, Bartlett AP, Oliveira L, Huntimer L, Harman RM, Van de Walle GR. Immortalized mammosphere-derived epithelial cells retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties. Stem Cell Res Ther 2024; 15:429. [PMID: 39543714 PMCID: PMC11566417 DOI: 10.1186/s13287-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The secretome of primary bovine mammosphere-derived epithelial cells (MDECs) has been shown to exert antimicrobial, regenerative, and immunomodulatory properties in vitro, which warrants its study as a potential biologic treatment with the potential to be translated to human medicine. Currently, the use of the MDEC secretome as a therapy is constrained by the limited life span of primary cell cultures and the decrease of secretome potency over cell passages. METHODS To address these limitations, early-passage bovine MDECs were immortalized using hTERT, a human telomerase reverse transcriptase. The primary and immortal MDECs were compared morphologically, transcriptomically, and phenotypically. The functional properties and proteomic profiles of the secretome of both cell lines were evaluated and compared. All experiments were performed with both low and high passage cell cultures. RESULTS We confirmed through in vitro experiments that the secretome of immortalized MDECs, unlike that of primary cells, maintained antimicrobial and pro-migratory properties over passages, while pro-angiogenic effects of the secretome from both primary and immortalized MDECs were lost when the cells reached high passage. The secretome from primary and immortalized MDECs, at low and high passages exerted immunomodulatory effects on neutrophils in vitro. CONCLUSIONS High passage immortalized MDECs retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties, suggesting they may serve as a consistent cell source for therapeutic use.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Julia M Poggi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Emilie A Dewever
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
- Department of Veterinary Pathobiology, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK.
| |
Collapse
|
3
|
Liu L, Wang L, Liu X, Wang B, Guo X, Wang Y, Xu Y, Guan J, Zhao Y. Elucidating the potential of isorhapontigenin in targeting the MgrA regulatory network: a paradigm shift for attenuating MRSA virulence. Antimicrob Agents Chemother 2024; 68:e0061124. [PMID: 39046236 PMCID: PMC11373206 DOI: 10.1128/aac.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yueying Wang
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
5
|
Gheitasi R, Röll D, Müller MM, Naseri M, König R, Slevogt H, Pletz MW, Makarewicz O. Exploring secretory proteome and cytokine kinetic of human peripheral blood mononuclear cells exposed to methicillin-resistant Staphylococcus aureus biofilms and planktonic bacteria. Front Immunol 2024; 15:1334616. [PMID: 38571946 PMCID: PMC10989517 DOI: 10.3389/fimmu.2024.1334616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 04/05/2024] Open
Abstract
Staphylococcus aureus is a highly successful pathogen infecting various body parts and forming biofilms on natural and artificial surfaces resulting in difficult-to-treat and chronic infections. We investigated the secreted cytokines and proteomes of isolated peripheral blood mononuclear cells (PBMCs) from healthy volunteers exposed to methicillin-resistant S. aureus (MRSA) biofilms or planktonic bacteria. Additionally, the cytokine profiles in sera from patients with community-acquired pneumonia (CAP) caused by S. aureus were investigated. The aim was to gain insights into the immune response involved and differentiate between the planktonic and sessile MRSA forms. We identified 321 and 298 targets that were significantly differently expressed in PBMCs when exposed to planktonic or biofilm-embedded bacteria, respectively. PBMCs exposed to planktonic MRSA cells secreted increased levels of TNF-α, while IL-18 was elevated when exposed to the biofilm. The machine-learning analyses of the cytokine profiles obtained for the in vitro PBMCs and CAP sera distinguished between the two types of bacteria forms based on cytokines IL-18, IL12, and IL-17, and with a lower importance IL-6. Particularly, IL-18 which has not been correlated with S. aureus biofilms so far might represent a suitable marker for monitoring chronification during MRSA infection to individualize the therapy, but this hypothesis must be proved in clinical trials.
Collapse
Affiliation(s)
- Reza Gheitasi
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
| | - Daniela Röll
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
| | - Mario M Müller
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Mohadeseh Naseri
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
| | - Rainer König
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research-HZI Braunschweig, Braunschweig, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), Biomedical Research in Endstage & Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
8
|
Majumder S, Sackey T, Viau C, Park S, Xia J, Ronholm J, George S. Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity. BMC Microbiol 2023; 23:43. [PMID: 36803552 PMCID: PMC9940407 DOI: 10.1186/s12866-023-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.
Collapse
Affiliation(s)
- Satwik Majumder
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Trisha Sackey
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Charles Viau
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Soyoun Park
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jianguo Xia
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jennifer Ronholm
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
9
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
10
|
Molecular epidemiology of clinical isolates of methicillin-resistant Staphylococcus aureus by multilocus sequence typing in northwestern (Tabriz) and southern (Kerman) of Iran: The emergence of MRSA ST4848-SCCmec III. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Radke EE, Li Z, Hernandez DN, El Bannoudi H, Kosakovsky Pond SL, Shopsin B, Lopez P, Fenyö D, Silverman GJ. Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A. Front Immunol 2021; 12:662782. [PMID: 33995388 PMCID: PMC8113617 DOI: 10.3389/fimmu.2021.662782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.
Collapse
Affiliation(s)
- Emily E Radke
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhi Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - David N Hernandez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Sergei L Kosakovsky Pond
- Institute of Genomic and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Bo Shopsin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Peter Lopez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - Gregg J Silverman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Design of a novel antimicrobial peptide 1018M targeted ppGpp to inhibit MRSA biofilm formation. AMB Express 2021; 11:49. [PMID: 33770266 PMCID: PMC7997937 DOI: 10.1186/s13568-021-01208-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant staphylococcus aureus (MRSA) and its biofilm infection were considered as one of the main international health issues. There are still many challenges for treatment using traditional antibiotics. In this study, a mutant peptide of innate defense regulator (IDR-)1018 named 1018M was designed based on molecular docking and amino acid substitution technology. The antibacterial/biofilm activity and mechanisms against MRSA of 1018M were investigated for the first time. The minimum inhibitory concentration (MIC) of 1018M was reduced 1 time (MIC = 2 μg/mL) compared to IDR-1018. After treatment with 32 μg/mL 1018M for 24 h, the percentage of biofilm decreased by 78.9%, which was more effective than the parental peptide. The results of mechanisms exploration showed that 1018M was more potent than IDR-1018 at destructing bacterial cell wall, permeating cell membrane (20.4%–50.1% vs 1.45%–10.6%) and binding to stringent response signaling molecule ppGpp (increased 27.9%). Additionally, the peptides could also exert their activity by disrupting genomic DNA, regulating the expression of ppGpp metabolism and biofilm forming related genes (RSH, relP, relQ, rsbU, sigB, spA, codY, agrA and icaD). Moreover, the higher temperature, pH and pepsase stabilities provide 1018M better processing, storage and internal environmental tolerance. These data indicated that 1018M may be a potential candidate peptide for the treatment of MRSA and its biofilm infections.
Collapse
|
13
|
Kamble E, Pardesi K. Antibiotic Tolerance in Biofilm and Stationary-Phase Planktonic Cells of Staphylococcus aureus. Microb Drug Resist 2021; 27:3-12. [DOI: 10.1089/mdr.2019.0425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ekta Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Huang Q, Xie Y, Yang Z, Cheng D, He L, Wang H, Liu Q, Li M. The cytoplasmic loops of AgrC contribute to the quorum-sensing activity of Staphylococcus aureus. J Microbiol 2020; 59:92-100. [PMID: 33201435 DOI: 10.1007/s12275-021-0274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022]
Abstract
In Staphylococcus aureus, the accessory gene regulator (agr) quorum-sensing system is thought to play an important role in biofilm formation. The histidine kinase AgrC is one of the agr system components and activated by the self-generated auto-inducing peptide (AIP), which is released continuously into the extracellular environment during bacterial growth. The extracellular loops (Extra-loops) of AgrC are crucial for AIP binding. Here, we reported that the cytoplasmic loops (Cyto-loops) of AgrC are also involved in Agr activity. We identified S. aureus ST398 clinical isolates containing a naturally occurring single amino acid substitution (lysine to isoleucine) at position 73 of an AgrC Cyto-loop that exhibited significantly stronger biofilm formation and decreased Agr activity compared to the wild-type strain. A constructed strain containing the K73I point mutation in AgrC Cyto-loop continued to show a growth dependent induction of the agr system, although the growth dependent induction was delayed by about 6 h compared to the wild-type. In addition, a series of strains containing deletion mutants of the AgrC Cyto- and Extra-loops were constructed and revealed that the removal of the two Cyto-loops and Extra-loops 2 and 3 totally abolished the Agr activity and the growth-dependence on the agr system induction. Remarkably, the Extra-loop 1 deletion did not affect the Agr activity. In conclusion, the AgrC Cyto-loops play a crucial role in the S. aureus quorum-sensing activity.
Collapse
Affiliation(s)
- Qian Huang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yihui Xie
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Ziyu Yang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Danhong Cheng
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lei He
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Hua Wang
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qian Liu
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China.
| | - Min Li
- Department of Laboratory Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China.
| |
Collapse
|
15
|
Updating Molecular Diagnostics for Detecting Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Isolates in Blood Culture Bottles. J Clin Microbiol 2019; 57:JCM.01195-19. [PMID: 31484703 PMCID: PMC6813022 DOI: 10.1128/jcm.01195-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023] Open
Abstract
Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of Staphylococcus aureus and 2 control organisms to understand the genetic basis of genotype-phenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant S. aureus (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCCmec)-orfX junction region that led to a misclassification as methicillin-susceptible S. aureus (MSSA). One strain contained a deletion in spa, which produced a false S. aureus-negative result. A control strain of S. aureus that harbored an SCCmec element but no mecA (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCCM1 insertion. The updated Xpert MRSA/SA BC test successfully detected both spa and SCCmec variants of MRSA and correctly identified empty-cassette strains of S. aureus as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9% contained empty SCCmec cassettes, 1.6% carried SCCM1, <1% had spa deletions, and <1% contained SCCmec variants other than those with SCCM1. These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay.
Collapse
|
16
|
Zhang H, Jiang JM, Han L, Lao YZ, Zheng D, Chen YY, Wan SJ, Zheng CW, Tan HS, Li ZG, Xu HX. Uncariitannin, a polyphenolic polymer from Uncaria gambier, attenuates Staphylococcus aureus virulence through an MgrA-mediated regulation of α-hemolysin. Pharmacol Res 2019; 147:104328. [PMID: 31288080 DOI: 10.1016/j.phrs.2019.104328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
A global transcriptional regulator, MgrA, was previously identified as a key determinant of virulence in Staphylococcus aureus. An 80% EtOH extract of Uncaria gambier was found to attenuate the virulence of S. aureus via its effects on MgrA. Using bioassay-guided fractionation, a polyphenolic polymer, uncariitannin, was found to be the main bioactive constituent of the extract, and its structure was characterized using spectral and chemical analysis. The molecular weight and polydispersity of uncariitannin were determined by gel permeation chromatography-refractive index-light scattering analysis. An electrophoretic mobility shift assay showed that uncariitannin could effectively inhibit the interaction of MgrA with DNA in a dose-dependent manner. Treatment with uncariitannin could decrease the mRNA and protein levels of Hla in both the S. aureus Newman and USA300 LAC strains. Further analysis of Hla expression levels in the Newman ΔmgrA and Newman ΔmgrA/pYJ335-mgrA strains indicated that uncariitannin altered Hla expression primarily in an MgrA-dependent manner. A mouse model of infection indicated that uncariitannin could attenuate MRSA virulence. In conclusion, uncariitannin may be a potential candidate for further development as an antivirulence agent for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Jia-Ming Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Yu-Yu Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Shi-Jie Wan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Chang-Wu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Hong-Sheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China.
| |
Collapse
|
17
|
|
18
|
Kota RK, Srirama K, Reddy PN. IgY antibodies of chicken do not bind staphylococcal binder of immunoglobulin (Sbi) from Staphylococcus aureus. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J Bacteriol 2018; 200:JB.00735-17. [PMID: 29440258 DOI: 10.1128/jb.00735-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus persistently colonizes the nasopharynx in humans, which increases the risk for invasive diseases, such as skin infection and bacteremia. Nasal colonization triggers IgG responses against staphylococcal surface antigens; however, these antibodies cannot prevent subsequent colonization or disease. Here, we describe S. aureus WU1, a multilocus sequence type 88 (ST88) isolate that persistently colonizes the nasopharynx in mice. We report that staphylococcal protein A (SpA) is required for persistence of S. aureus WU1 in the nasopharynx. Compared to animals colonized by wild-type S. aureus, mice colonized with the Δspa variant mount increased IgG responses against staphylococcal colonization determinants. Immunization of mice with a nontoxigenic SpA variant, which cannot cross-link B cell receptors and divert antibody responses, elicits protein A-neutralizing antibodies that promote IgG responses against colonizing S. aureus and diminish pathogen persistence.IMPORTANCE Staphylococcus aureus persistently colonizes the nasopharynx in about one-third of the human population, thereby promoting community- and hospital-acquired infections. Antibiotics are currently used for decolonization of individuals at increased risk of infection. However, the efficacy of antibiotics is limited by recolonization and selection for drug-resistant strains. Here, we propose a model of how staphylococcal protein A (SpA), a B cell superantigen, modifies host immune responses during colonization to support continued persistence of S. aureus in the nasopharynx. We show that this mechanism can be thwarted by vaccine-induced anti-SpA antibodies that promote IgG responses against staphylococcal antigens and diminish colonization.
Collapse
|
20
|
Gu T, Zhao S, Pi Y, Chen W, Chen C, Liu Q, Li M, Han D, Ji Q. Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 2018; 9:3248-3253. [PMID: 29780457 PMCID: PMC5932532 DOI: 10.1039/c8sc00637g] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The base editor pnCasSA-BEC enables highly efficient base editing in Staphylococcus aureus.
Novel therapeutic means against Staphylococcus aureus infections are urgently needed due to the emergence of drug-resistant S. aureus. We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA–BEC), enabling highly efficient gene inactivation and point mutations in S. aureus. We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation via generating a premature stop codon. The pnCasSA–BEC system nicks the non-edited strand of the genomic DNA, directly catalyzes the conversion of cytidine (C) to uridine (U), and relies on DNA replication to achieve C → T (G → A) conversion without using donor repair templates. The development of the base-editing system will dramatically accelerate drug-target exploration in S. aureus and provides critical insights into the development of base-editing tools in other microbes.
Collapse
Affiliation(s)
- Tongnian Gu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Siqi Zhao
- Key Laboratory of Genomic and Precision Medicine , Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing 100101 , China . .,College of Future Technology , Sino-Danish College , University of Chinese Academy of Science , Beijing 100049 , China
| | - Yishuang Pi
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Weizhong Chen
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Chuanyuan Chen
- Key Laboratory of Genomic and Precision Medicine , Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing 100101 , China . .,College of Future Technology , Sino-Danish College , University of Chinese Academy of Science , Beijing 100049 , China
| | - Qian Liu
- Department of Laboratory Medicine , Ren Ji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Min Li
- Department of Laboratory Medicine , Ren Ji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine , Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing 100101 , China . .,College of Future Technology , Sino-Danish College , University of Chinese Academy of Science , Beijing 100049 , China
| | - Quanjiang Ji
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| |
Collapse
|
21
|
Spa type distribution in MRSA and MSSA bacteremias and association of spa clonal complexes with the clinical characteristics of bacteremia. Eur J Clin Microbiol Infect Dis 2018; 37:937-943. [PMID: 29428976 DOI: 10.1007/s10096-018-3210-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/02/2018] [Indexed: 01/30/2023]
Abstract
The genetic distribution of invasive methicillin-susceptible (MSSA) and resistant S. aureus (MRSA) strains has to be addressed in order to target infection control strategies. A large MRSA epidemic caused by a certain MRSA strain (spa type 067) broke out in 2001 in our health district. We wanted to investigate the current spa type distribution in MRSA and MSSA bacteremias and assess the potential association of spa clonal complexes (spaCC) with the clinical characteristics of S. aureus bacteremia. One hundred nine invasive MRSA isolates and 353 invasive MSSA isolates were spa typed and grouped into clonal complexes (spaCC). Spa type distribution was compared to that of colonizing MRSA strains. Spa type and spaCC data linked to clinical information on the course of bacteremic cases was used to search for differences in virulence between strains. Spa type distribution in MRSA is less heterogenic than in MSSA. t067 dominates both in MRSA colonisations and in invasive findings. Among MSSA, no such dominating strains were found. Of spaCCs, mortality was the highest in spaCC 067 (25.6%). SpaCC 008 was more often associated with endocarditis than other CCs (22.7 vs 5.8%, p = 0.013), spaCC 2133 with skin infections (68.4 vs 36.4%, p = 0.007), and spaCC 012 with foreign body infections (25.0 vs 9.3%, p = 0.029) than other clonal complexes. A single successful strain can explain the major proportion of MRSA among S. aureus bacteremias. Certain spaCCs showed association with certain clinical characteristics. These findings suggest that S. aureus strains differ in their virulence and invasiveness.
Collapse
|
22
|
Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA, Kwan TY, Mays HR, Rambhadran A, Zhang Y, Martin RL, Cavalier MC, Simard J, Shivaswamy S. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One 2018; 13:e0190537. [PMID: 29364906 PMCID: PMC5783355 DOI: 10.1371/journal.pone.0190537] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus can cause devastating and life-threatening infections. With the increase in multidrug resistant strains, novel therapies are needed. Limited success with active and passive immunization strategies have been attributed to S. aureus immune evasion. Here, we report on a monoclonal antibody, 514G3, that circumvents a key S. aureus evasion mechanism by targeting the cell wall moiety Protein A (SpA). SpA tightly binds most subclasses of immunoglobulins via their Fc region, neutralizing effector function. The organism can thus shield itself with a protective coat of serum antibodies and render humoral immunity ineffective. The present antibody reactivity was derived from an individual with natural anti-SpA antibody titers. The monoclonal antibody is of an IgG3 subclass, which differs critically from other immunoglobulin subclasses since its Fc is not bound by SpA. Moreover, it targets a unique epitope on SpA that allows it to bind in the presence of serum antibodies. Consequently, the antibody opsonizes S. aureus and maintains effector function to enable natural immune mediated clearance. The data presented here provide evidence that 514G3 antibody is able to successfully rescue mice from S. aureus mediated bacteremia.
Collapse
Affiliation(s)
| | | | - Jian Lin
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | | | - Tzu-Yu Kwan
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | - Anu Rambhadran
- XBiotech USA Inc., Austin, Texas, United States of America
| | - Yanfeng Zhang
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | | | - John Simard
- XBiotech USA Inc., Austin, Texas, United States of America
| | | |
Collapse
|
23
|
Distinct virulent network between healthcare- and community-associated Staphylococcus aureus based on proteomic analysis. Clin Proteomics 2018; 15:2. [PMID: 29321722 PMCID: PMC5757299 DOI: 10.1186/s12014-017-9178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus or SA) is a leading cause of healthcare-associated (HA-) and community-associated (CA) infection. HA-SA isolates usually cause nosocomial pneumonia, bloodstream infections, catheter-related urinary tract infections, etc. On the other hand, CA-SA isolates usually cause highly fatal diseases, such as SSTIs as well as post influenza necrotic hemorrhagic pneumonia. The differences of the infection types are partially due to the unique characteristics between HA-SA and CA-SA isolates. For example, HA-SA isolates showed strong adherence to host epithelial cells, while CA-SA isolates displayed higher virulence due to the increased activity of the important quorum-sensing system accessory gene regulator (agr). Thus, the aim of this study was to characterize the proteomic difference between HA-SA and CA-SA lineage. Methods In this study, the extracted peptides from those representative strains were analyzed by LC-MS/MS. The protein-protein interaction network was constructed by bioinformatics and their expressions were verified by RT-PCR and Western blot. Results We demonstrated that Agr system (AgrA and AgrC) and its interactive factors (PhoP, SrrB, YycG, SarX, SigB and ClpP) based on the protein–protein interaction network were expressed significantly higher in the epidemic Chinese CA-SA lineage ST398 compared to HA-SA lineage ST239 by LC-MS/MS. We further verified the increased transcription of all these genes in ST398 by RT-PCR, suggesting that the higher expression of these genes/proteins probably play role in the acute infection of CA-SA. Moreover, surface-related proteins (FnbpA, SpA, Atl, ClfA, IsaA, IsaB, LtaS, SsaA and Cna) that are repressed by the Agr system have significantly higher expression in the epidemic Chinese HA-SA clone ST239 in comparison to CA-SA lineage ST398 by LC-MS/MS. Furthermore, we confirmed the significantly increased expression of two important adhesive proteins (Atl and ClfA) in ST239 by Western blot, which may contribute to the durative infection of HA-SA. Conclusion The results suggest that the different proteomic profile, at least partially, contribute to the pathogenic differences between HA-SA and CA-SA. Electronic supplementary material The online version of this article (10.1186/s12014-017-9178-5) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Yang X, Qian S, Yao K, Wang L, Liu Y, Dong F, Song W, Zhen J, Zhou W, Xu H, Zheng H, Li W. Multiresistant ST59-SCCmec IV-t437 clone with strong biofilm-forming capacity was identified predominantly in MRSA isolated from Chinese children. BMC Infect Dis 2017; 17:733. [PMID: 29178841 PMCID: PMC5702180 DOI: 10.1186/s12879-017-2833-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
Background This study aimed to investigate the clinical and molecular epidemiology and biofilm formation of Staphylococcus aureus (SA) isolated from pediatricians in China. Methods SA strains were isolated from Beijing Children’s hospital from February 2016 to January 2017. Isolates were typed by multilocus sequence typing (MLST), spa and SCCmec typing (for Methicillin-resistant SA [MRSA] only). Antimicrobial susceptibility testing was performed by agar dilution method except sulphamethoxazole/trimethoprim (E-test method). Biofilm formation and biofilm associated genes were detected. Results Totally 104 children (41 females and 63 males; median age, 5.2 months) were enrolled in this study, in which 60 patients suffered from MRSA infection. Among the 104 cases, 54.8% were categorized as community associated SA (CA-SA) infections. The children under 3 years were more likely to occur CA-SA infections compared with older ones (P = 0.0131). ST59-SCCmec IV-t437 (61.7%) was the most prevalent genotype of MRSA, and ST22-t309 (18.2%), ST5-t002 (9.1%), ST6-t701 (9.1%), ST188-t189 (9.1%) were the top four genotypes of methicillin-sensitive SA (MSSA). All the present isolates were susceptible to linezolid, vancomycin, trimethoprim-sulfamethoxazole, mupirocin, tigecyclin, fusidic acid. No erythromycin-susceptible isolate was determined, and only a few isolates (3.8%) were identified as susceptible to penicillin. Multi-drug resistant isolates were reponsible for 83.8% of the ST59-SCCmec IV-t437 isolates. The isolates with strong biofilm formation were found in 85% of MRSA and 53.2% of MSSA, and in 88.7% of ST59-SCCmec IV-t437 isolates. Biofilm formation ability varied not only between MRSA and MSSA (P = 0.0053), but also greatly among different genotypes (P < 0.0001). The prevalence of the biofilm associated genes among ST59-SCCmec IV-t437 clone was: icaA (100.0%), icaD (97.3%), fnbpA (100.0%), fnbpB (0), clfA (100%), clfB (100%), cna (2.7%), bbp (0), ebpS (88.5%), sdrC (78.4%), sdrD (5.4%), and sdrE (94.5%). Conclusions These results indicated strong homology of the MRSA stains isolated from Chinese children, which was caused by spread of multiresistant ST59-SCCmec IV-t437 clone with strong biofilm formation ability. The MSSA strains, in contrast, were very heterogeneity, half of which could produce biofilm strongly. Electronic supplementary material The online version of this article (10.1186/s12879-017-2833-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Kaihu Yao
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lijuan Wang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Yingchao Liu
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Fang Dong
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenqi Song
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jinghui Zhen
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Zhou
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong Xu
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hongyan Zheng
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenting Li
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| |
Collapse
|