1
|
Puteri MN, Gew LT, Ong HC, Ming LC. Technologies to eliminate microplastic from water: Current approaches and future prospects. ENVIRONMENT INTERNATIONAL 2025; 199:109397. [PMID: 40279687 DOI: 10.1016/j.envint.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 04/27/2025]
Abstract
Microplastic (MP) pollution has become a widespread environmental threat which must be addressed as it affects the water bodies, soil as well as air. MPs originally from synthetic textiles, tire abrasion, plastic waste, etc. pose the significant risks to both the environment and health due to its structure, ability to absorb toxins and act as carriers of harmful substances. This characteristic enables MPs to accumulate toxic substances and spread them within the food chain which leads to adverse effects on both the environment and human health including possible endocrine disruption. This problem needs to be solved in order to protect the self-regulatory systems of the environment and safeguard for human health. This review investigates various methods developed to eliminate MPs from water which each method exposes its own strengths and limitations. Conventional methods, such as filtration, coagulation-flocculation, and sedimentation serve as the primary line of defense but often struggle with smaller particles. Membrane filtration, magnetic separation, and electrochemical methods have shown better performance particularly for a wider MPs size range. However, their adoption is limited due to high costs and high energy requirement. A chemical approach focuses on the use of reactors to degrade MPs as a means of overcoming the problem posed by the persistent particles. Biological approaches, including bioremediation through bacteria, fungi, and algae offer eco-friendly alternatives by breaking down MPs into less harmful components. Future directions in MPs management involve the integration of these technologies for enhanced removal efficiency, the development of novel materials, and improved system designs to reduce costs and environmental impact. In summary, advancing research in biotechnological solutions and optimizing existing methods is critical to address the widespread and complex nature of MPs pollution to ensure healthier ecosystems and safer water supplies.
Collapse
Affiliation(s)
| | - Lai Ti Gew
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Hwai Chyuan Ong
- School of Engineering, Faculty of Engineering and Technology, Sunway University, Sunway City, Malaysia; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Long Chiau Ming
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
| |
Collapse
|
2
|
Pradal I, Weckx S, De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl Environ Microbiol 2025; 91:e0221624. [PMID: 40013785 PMCID: PMC11921326 DOI: 10.1128/aem.02216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
The production of fruity esters by sourdough lactic acid bacteria (LAB) and yeasts has not been explored in detail. Moreover, the biosynthesis of esters by LAB species under conditions similar to those occurring during sourdough production is still questionable. Concerning yeasts, a genome mining of 75 genomes revealed a strain dependency of the presence of seven specific ester biosynthesis genes. Accordingly, PCR assays to detect these acetate (ATF1 and ATF2) and ethyl ester (EHT1 and EEB1) biosynthesis genes were developed and used to screen 91 strains of yeast species. Concerning LAB, a genome mining of 401 genomes revealed a species dependency of the presence of three esterase-encoding genes (estA, estB, and estC). A phenotypic analysis carried out with a selection of 10 strains of the LAB species Companilactobacillus crustorum, Companilactobacillus nantensis, Companilactobacillus paralimentarius, Fructilactobacillus sanfranciscensis, Lactiplantibacillus xiangfangensis, Levilactobacillus zymae, and Limosilactobacillus fermentum in a wheat sourdough simulation medium (WSSM) supplemented with ester precursor molecules ([higher] alcohols and fatty acids) revealed that their ester biosynthesis capacity was limited by the precursor concentrations. Ethyl acetate and ethyl lactate were produced by all strains, except for those of Frul. sanfranciscensis. These results suggested that one of the esterase-encoding genes considered could be implicated in the ethyl acetate and/or ethyl lactate biosynthesis. Overall, the ester biosynthesis capacity by LAB is of great interest in view of fruity flavor formation during sourdough and sourdough bread productions. IMPORTANCE The present study gave insights into the production of esters, which impart fruity flavors to fermented foods, by not only sourdough yeasts but also lactic acid bacteria. It showed that some lactic acid bacteria species can synthesize the esters ethyl acetate (sweet notes) and ethyl lactate (creamy notes) under specific conditions. The information gathered during the present study will enable sourdough bakers and companies from the bakery sector to get more information on how to produce sourdoughs that can add fruity notes to the final products after a rational screening and selection of potential starter culture strains.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
4
|
Ye Q, Lao L, Zhang A, Qin Y, Zong M, Pan D, Yang H, Wu Z. Multifunctional properties of the transmembrane LPxTG-motif protein derived from Limosilactobacillus reuteri SH-23. J Dairy Sci 2023; 106:8207-8220. [PMID: 37641365 DOI: 10.3168/jds.2023-23440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
The LPxTG-motif protein is an important transmembrane protein with high hydrophilicity and stability, as evidenced by its stress tolerance and adhesion ability. In this study, a novel LPxTG-motif protein with esterase activity (LEP) was expressed, and the multifunctional properties such as adhesion properties and esterase activity were also investigated. When cocultured with Limosilactobacillus reuteri SH-23, the adhesion ability of L. reuteri SH-23 to HT-29 cells was improved, and this adhesion was further found relating to the potential target protein Pyruvate kinase M1/2 (PKM) of HT-29 cells. In addition, as a multifunctional protein, LEP can promote the hydrolysis of bovine milk lipids with its esterase activity, and the activity was enhanced in the presence of Zn2+ and Mn2+ at pH 7. Furthermore, the polyunsaturated fatty acids (PUFA) such as linoleic acid and eicosapentaenoic acid were found to increase during the hydrolyzing process. These unique properties of LEP provide a comprehensive understanding of the adhesion function and PUFA releasing properties of the multifunctional protein derived from L. reuteri SH-23 and shed light on the beneficial effect of this Lactobacillus strain on the colonization of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianwen Ye
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Lifeng Lao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Ao Zhang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yiman Qin
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Manli Zong
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Hua Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, Zhejiang, P. R. China.
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| |
Collapse
|
5
|
Chen M, Wang X, Liu Y, Li P, Wang R, Jiang L. Discoloration Investigations of Yellow Lantern Pepper Sauce ( Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules 2022; 27:molecules27207139. [PMID: 36296734 PMCID: PMC9606932 DOI: 10.3390/molecules27207139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Color is one of the important indicators affecting the quality of fermented pepper sauces, and it is closely related to carotenoid composition. This study systematically analyzed the changes in carotenoids and related physiochemical indices during the fermentation of yellow lantern pepper sauce. The CIELab color values indicated that L* and C* displayed a significant decreasing trend during fermentation. After 35 days of fermentation, the total carotenoid content significantly reduced from 3446.36 to 1556.50 μg/g DW (p < 0.05), and the degradation rate was 54.84%. Among them, the total content of carotene decreased by 56.03% during fermentation, whereas the degradation rate of xanthophylls and their esters was 44.47%. According to correlation analysis, violaxanthin myristate and lutein played a pivotal role in L*, a *, b *, chroma (C*), and yellowness index (YI). Moreover, PCA analysis indicated that lactic acid and acetic acid were the important qualities affecting the stability of pigment in fermented yellow lantern pepper sauce, which might also be the inducement of the color change. This work gives additional information concerning the discoloration of yellow lantern pepper sauce during fermentation and provides theory evidence regulating and improving the sensory qualities of yellow lantern pepper sauce.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyao Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: ; Tel.: +86-731-84673517
| |
Collapse
|
6
|
Wang X, Chen K, Qiu J, Hu Y, Yin F, Liu X, Zhou D. Gastrointestinal Distribution of Tyrosol Acyl Esters in Orally Infected Mice and Their Hydrolysis by Lactobacillus Species Isolated from the Feces of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1316-1326. [PMID: 35068150 DOI: 10.1021/acs.jafc.1c07432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phenolipids, which have been widely used as food antioxidants, are also a potential functional ingredient. However, their characteristics of gastrointestinal distribution and microbial hydrolysis remain unexplored. In this study, an in vivo mouse model and an in vitro anaerobic fermentation model were used to evaluate the above characteristics of tyrosol acyl esters (TYr-Es) with fatty acids (FAs) of C12:0, C18:0, and C18:2. HPLC-UV measurements indicated that oral TYr-Es were remarkably stable in the stomach environment of mice. However, TYr-Es were hydrolyzed to free TYr by lipase in the small intestine, which showed a sustained-release behavior. Specially, TYr was rapidly and almost completely absorbed in the small intestine. By contrast, detectable amounts of TYr-Es were found in the cecum and colon and could be further hydrolyzed to free TYr and FAs by Lactobacillus. These TYr and FAs can participate in regulating the composition of the intestinal microorganisms, which may lead to some health benefits.
Collapse
Affiliation(s)
- Xinmiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Kefan Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jin Qiu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
7
|
Li BC, Guo TT, Ding GB. Characteration of a novel arylesterase from probiotics Lacticaseibacillus rhamnosus GG with the preference for medium- and long-chain p-Nitrophenyl esters. 3 Biotech 2021; 11:496. [PMID: 34881159 DOI: 10.1007/s13205-021-03053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
We prospected a novel arylesterase LggEst from the probiotics Lacticaseibacillus rhamnosus GG by genome mining strategy, and characterized the enzymatic properties in detail. Biochemical characterization revealed that arylesterase LggEst presented high activity at a wide range of temperatures from 25 to 65 °C with maximum activity at 50 °C. LggEst maintained high activity in the pH range from 5.5 to 7.5 with optimum pH of 6.5. LggEst might efficiently hydrolyze a series of aryl substrates p-nitrophenyl esters with different acyl chain lengths. LggEst displayed the Vmax from 2.8 to 77.3 μmol min-1 mg-1 protein and the k cat from 1.8 to 48.8 s-1 with the highest catalytic activity on pNPC6. The K M of LggEst on different substrates varied significantly from 4.9 μM to 5.6 mM with the highest affinity on pNPC10. LggEst exhibited the preference for medium- and long-chain p-nitrophenyl esters. LggEst showed remarkable thermostability at 45 °C. LggEst could be tolerant of several organic solvents at the concentration of 10% and DMSO and methanol at the concentration of 20%. Catalytic activity of LggEst was improved by 12% in the presence of 20% ethylene glycol. LggEst was resistant to high concentrations of sodium citrate and sodium chloride. Notably, enzymatic activity of LggEst was significantly enhanced in the presence of 0.1% sodium deoxycholate at high temperatures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03053-7.
Collapse
|
8
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
9
|
Markkinen N, Laaksonen O, Yang B. Impact of malolactic fermentation with Lactobacillus plantarum on volatile compounds of sea buckthorn juice. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMalolactic fermentation using sea buckthorn (Hippophaë rhamnoides) juice as raw material was performed with six different strains of Lactobacillus plantarum. Increasing juice pH from 2.7 to 3.5 or adapting cells to low pH (i.e., acclimation) prior to inoculation allowed malolactic fermentation with all tested strains. Moreover, reducing pH of the growth medium from 6 to 4.5 with l-malate had little or no impact on biomass production. Volatile profile of sea buckthorn juice was analyzed with HS-SPME–GC–MS before and after fermentation. A total of 92 volatiles were tentatively identified and semi-quantified from sea buckthorn juice, majority of which were esters with fruity odor descriptors. Esters and terpenes were decreased in both inoculated and control juices during incubation. Microbial activity increased the levels of acetic acid (vinegar like), free fatty acids (cheese like), ketones (buttery like), and alcohols with fruity descriptors. Conversely, aldehydes associated with “green” aroma were decreased as a result of fermentation. Juices fermented with DSM 1055 had the highest acid and alcohol content, while fermentation with DSM 13273 resulted in the highest content of ketones. Compared to inoculation with other strains, fermentation with strains DSM 16365 and DSM 100813 resulted in rapid malolactic fermentation, less production of volatile acids, and lower loss of esters and terpenes important for natural sea buckthorn flavor.
Collapse
|
10
|
Chen K, Gao C, Han X, Li D, Wang H, Lu F. Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. J Food Sci 2020; 86:475-483. [PMID: 32964467 DOI: 10.1111/1750-3841.15349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
We identified lentil products with both nutritional value and antioxidant capacity by studying the changes of probiotics and functional substances during single fermentation with lactic acid bacteria (LAB) or co-fermentation using LAB and Bacillus subtilis natto. After fermentation, the best growth of LAB was observed in anaerobic solid-state co-fermentation, whereby the viable counts of Lactobacillus plantarum TK9 and Lactobacillus paracasei TK1501 reached 2.77 × 109 and 2.78 × 109 CFU/g, respectively. Furthermore, the total phenol and genistin content produced by the two mixed groups, respectively, increased by 0.52- and 0.66-fold, as well as 0.63- and 0.64-fold, compared with unfermented samples. Similarly, the free amino acid content increased by 0.53- and 0.49-fold, respectively. The 50% inhibitory concentrations for the radical-scavenging against 1,1-diphenyl-2-picrylhydrazyl and α-glucosidase inhibitory activity were lower following anaerobic co-fermentation. Consistently, products of anaerobic mixed solid-state fermentation had higher oxygen radical absorbance capacity. Therefore, anaerobic solid-state co-fermentation of lentils using B. subtilis natto may promote the multiplication of LAB and enhance the antioxidant activity of fermented lentil products. PRACTICAL APPLICATION: Simple and efficient food handling is more suitable for industrial production. Co-fermentation is a good method to optimize the fermentation process. Co-culture technology has high potential in terms of functionality and antioxidant capacity.
Collapse
Affiliation(s)
- Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Congcong Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Xuemei Han
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Dan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Haikuan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
11
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
12
|
Identification and characterization of a novel bacterial carbohydrate esterase from the bacterium Pantoea ananatis Sd-1 with potential for degradation of lignocellulose and pesticides. Biotechnol Lett 2020; 42:1479-1488. [PMID: 32144558 DOI: 10.1007/s10529-020-02855-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Identification and characterization of a novel bacterial carbohydrate esterase (PaCes7) with application potential for lignocellulose and pesticide degradation. RESULTS PaCes7 was identified from the lignocellulolytic bacterium, Pantoea ananatis Sd-1 as a new carbohydrate esterase. Recombinant PaCes7 heterologously expressed in Escherichia coli showed a clear preference for esters with short-chain fatty acids and exhibited maximum activity towards α-naphthol acetate at 37 °C and pH 7.5. Purified PaCes7 exhibited its catalytic activity under mesophilic conditions and retained more than 40% activity below 30 °C. It displayed a relatively wide pH stability from pH 6-11. Furthermore, the enzyme was strongly resistant to Mg2+, Pb2+, and Co2+ and activated by K+ and Ca2+. Both P. ananatis Sd-1 and PaCes7 could degrade the pesticide carbaryl. Additionally, PaCes7 was shown to work in combination with cellulase and/or xylanase in rice straw degradation. CONCLUSIONS The data suggest that PaCes7 possesses promising biotechnological potential.
Collapse
|
13
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
14
|
Antifungal Activity of Lactobacillus pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols. Probiotics Antimicrob Proteins 2019; 10:186-200. [PMID: 29110259 PMCID: PMC5974004 DOI: 10.1007/s12602-017-9344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The antifungal activity of Lactobacillus pentosus ŁOCK 0979 depends both on the culture medium and on the fungal species. In the control medium, the strain exhibited limited antagonistic activity against indicator food-borne molds and yeasts. However, the supplementation of the bacterial culture medium with polyols (erythritol, lactitol, maltitol, mannitol, sorbitol, xylitol) or their galactosyl derivatives (gal-erythritol, gal-sorbitol, gal-xylitol) enhanced the antifungal properties of Lactobacillus pentosus ŁOCK 0979. Its metabolites were identified and quantified by enzymatic methods, HPLC, UHPLC-MS coupled with QuEChERS, and GC-MS. The presence of polyols and gal-polyols significantly affected the acid metabolite profile of the bacterial culture supernatant. In addition, lactitol and mannitol were used by bacteria as alternative carbon sources. A number of compounds with potential antifungal properties were identified, such as phenyllactic acid, hydroxyphenyllactic acid, and benzoic acid. Lactobacillus bacteria cultivated with mannitol synthesized hydroxy-fatty acids, including 2-hydroxy-4-methylpentanoic acid, a well-described antifungal agent. Scanning electron microscopy (SEM) and light microscopy confirmed a strong antifungal effect of L. pentosus ŁOCK 0979.
Collapse
|
15
|
Kelly SM, O'Callaghan J, Kinsella M, van Sinderen D. Characterisation of a Hydroxycinnamic Acid Esterase From the Bifidobacterium longum subsp. longum Taxon. Front Microbiol 2018; 9:2690. [PMID: 30473685 PMCID: PMC6237967 DOI: 10.3389/fmicb.2018.02690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
Bifidobacterium longum subsp. longum, a common member of the human gut microbiota with perceived positive health effects, is capable of metabolising certain complex, plant-derived carbohydrates which are commonly found in the (adult) human diet. These plant glycans may be employed to favourably modulate the microbial communities in the intestine. Hydroxycinnamic acids (HCAs) are plant phenolic compounds, which are attached to glycans, and which are associated with anti-oxidant and other beneficial properties. However, very little information is available regarding metabolism of HCA-containing glycans by bifidobacteria. In the current study, a gene encoding a hydroxycinnamic acid esterase was found to be conserved across the B. longum subsp. longum taxon and was present in a conserved locus associated with plant carbohydrate utilisation. The esterase was shown to be active against various HCA-containing substrates and was biochemically characterised in terms of substrate preference, and pH and temperature optima of the enzyme. This novel hydroxycinnamic acid esterase is presumed to be responsible for the release of HCAs from plant-based dietary sources, a process that may have benefits for the gut environment and thus host health.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Mike Kinsella
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Sun Y, Qian J, Xu X, Tang Y, Xu W, Yang W, Jiang Y, Yang G, Ding Z, Cong Y, Wang C. Dendritic cell-targeted recombinantLactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection. Vet Microbiol 2018; 223:9-20. [PMID: 30173758 DOI: 10.1016/j.vetmic.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/21/2022]
Abstract
H9N2 avian influenza viruses are of significance in poultry and public health for the past two decades. Vaccination plays an important role in preventing the infection in domestic poultry. Current H9N2 vaccines have not yet offered ideal protection and eliminated shedding of G57 genotype viruses responsible for H9N2 outbreaks during 2010-2013. Targeted vaccination is a promising strategy to improve vaccine effectiveness. Such a vaccine strategy can be achieved if it is targeted to dendritic cells (DCs) that directly elicit mucosal and adaptive immune responses against microbe challenge. For this purpose, we develop a DC-targeted mucosal vaccine for the oral delivery of the HA protein fused to a DCpep by using Lactobacillus plantarum as an antigen delivery system against G57 virus infection. It showed that Lactobacillus plantarum expressing HA-DCpep confers efficient protection against G57 H9N2 infection, due to have the potential to activate DCs by the TLR-induced NF-κB pathway, to promote DC migration by the CCR7-CCL19/CCL21 axis, thereby enhancing the presentation of immunogen to T and B lymphocytes, resulting in skewing T cells polarization towards Th1, Th2 and Treg cells and evoking more efficient mucosal and adaptive immunity responses. The presented oral mucosal vaccine strategy illustrates the feasibility and efficacy of antigen targeting to DCs through genetic fusion of vaccines to DC-targeting peptides and aids in the design and selection of indications that could be used with this oral vaccine platform against influenza.
Collapse
Affiliation(s)
- Yixue Sun
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Qian
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yubo Tang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wenzhang Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wentao Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Chunfeng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
17
|
Bautista-Expósito S, Peñas E, Silván JM, Frias J, Martínez-Villaluenga C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem 2017; 248:262-271. [PMID: 29329853 DOI: 10.1016/j.foodchem.2017.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Lentil fermentation has a promising potential as a strategy for development of multifunctional ingredients targeting metabolic syndrome (MetS). Response surface methodology was applied to optimize lentil fermentation and study its effects on generation of peptides, soluble phenolics and bioactivities. Fermentation using Lactobacillus plantarum and Savinase® 16 L was carried out at different pH (6.5-8.5) and times (5.5-30 h). Analysis of variance was performed to evaluate linear, quadratic and interaction effects between fermentation parameters. pH positively affected peptides, soluble phenolic compounds and antioxidant activity whereas a negative impact on lipase inhibitory activity was observed (p < .0001). Time showed positive effect on proteolysis and negatively affected angiotensin I-converting enzyme inhibitory activity of fermented lentil (p < .0001). Multivariate optimization led to high levels of peptides, soluble phenolics and bioactivity of fermented lentil at pH 8.5 and 11.6 h. In conclusion, this study might contribute to the development of functional ingredients from lentil for MetS management.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Manuel Silván
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | |
Collapse
|
18
|
Wang Y, Ryu BH, Yoo W, Lee CW, Kim KK, Lee JH, Kim TD. Identification, characterization, immobilization, and mutational analysis of a novel acetylesterase with industrial potential (LaAcE) from Lactobacillus acidophilus. Biochim Biophys Acta Gen Subj 2017; 1862:197-210. [PMID: 29051067 DOI: 10.1016/j.bbagen.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022]
Abstract
Lactic acid bacteria, which are involved in the fermentation of vegetables, meats, and dairy products, are widely used for the productions of small organic molecules and bioactive peptides. Here, a novel acetylesterase (LaAcE) from Lactobacillus acidophilus NCFM was identified, functionally characterized, immobilized, and subjected to site-directed mutagenesis for biotechnological applications. The enzymatic properties of LaAcE were investigated using biochemical and biophysical methods including native polyacrylamide gel electrophoresis, acetic acid release, biochemical assays, enzyme kinetics, and spectroscopic methods. Interestingly, LaAcE exhibited the ability to act on a broad range of substrates including glucose pentaacetate, glyceryl tributyrate, fish oil, and fermentation-related compounds. Furthermore, immobilization of LaAcE showed good recycling ability and high thermal stability compared with free LaAcE. A structural model of LaAcE was used to guide mutational analysis of hydrophobic substrate-binding region, which was composed of Leu156, Phe164, and Val204. Five mutants (L156A, F164A, V204A, L156A/F164A, and L156A/V204A) were generated and investigated to elucidate the roles of these hydrophobic residues in substrate specificity. This work provided valuable insights into the properties of LaAcE, and demonstrated that LaAcE could be used as a model enzyme of acetylesterase in lactic acid bacteria, making LaAcE a great candidate for industrial applications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|