1
|
Sun MR, Xing JY, Li XT, Fang R, Zhang Y, Li ZL, Song NN. Recent advances in research on Mycobacterium tuberculosis virulence factors and their role in pathogenesis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00079-9. [PMID: 40175253 DOI: 10.1016/j.jmii.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB) in humans and animals. Mtb invades the host's lungs via airborne transmission, infecting macrophages and causing TB. In some cases, the infection can spread to other tissues and organs. Despite the availability of several drugs for TB treatment, the emergence of multidrug-resistant TB has led to high morbidity and mortality rates worldwide. Therefore, it is urgent to discover new anti-tuberculosis drugs for more effective treatment. Recent studies have shown that Mtb virulence factors play a crucial role in its pathogenicity. By evading the host's immune surveillance through mechanisms such as anti-oxidative stress, nutrient synthesis and metabolism, and apoptosis in host cells, Mtb can achieve long-term survival in the host. Understanding the pathogenicity mechanisms of Mtb will aid the development of new vaccines and anti-tuberculosis drugs. In this review, we summarize the latest research progress on Mtb virulence factors to provide a reference for targeted TB treatment.
Collapse
Affiliation(s)
- Ming-Rui Sun
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Jia-Yin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao-Tian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Yang Zhang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Zhao-Li Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing, 100000, China.
| | - Ning-Ning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Nasiri MJ, Venketaraman V. Advances in Host-Pathogen Interactions in Tuberculosis: Emerging Strategies for Therapeutic Intervention. Int J Mol Sci 2025; 26:1621. [PMID: 40004082 PMCID: PMC11855387 DOI: 10.3390/ijms26041621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains one of the most challenging infectious diseases, with Mycobacterium tuberculosis (Mtb) employing sophisticated mechanisms to evade host immunity and establish persistent infections. This review explores recent advances in understanding Mtb's immune evasion strategies; granuloma dynamics; and emerging immunotherapeutic approaches. Key findings highlight the manipulation of host autophagy; metabolic reprogramming; and cytokine pathways by Mtb to sustain its survival within host cells. Insights into granuloma formation reveal the critical role of bacterial lipids; immune modulation; and hypoxia-driven dormancy in maintaining chronic infection. Innovative therapeutic strategies, including host-directed therapies; epigenetic interventions; and immunomodulators, hold promise for improving TB management and combating drug-resistant strains. Despite these advancements, significant challenges remain, including the development of effective vaccines; addressing latent TB; and ensuring equitable access to novel treatments. The integration of advanced technologies such as artificial intelligence and multi-omics approaches, alongside global collaboration, is essential to overcome these hurdles. This review underscores the importance of a multidisciplinary approach to tackling TB, with the ultimate goal of eradicating this global health threat.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
3
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
4
|
Role of a Putative Alkylhydroperoxidase Rv2159c in the Oxidative Stress Response and Virulence of Mycobacterium tuberculosis. Pathogens 2022; 11:pathogens11060684. [PMID: 35745538 PMCID: PMC9227533 DOI: 10.3390/pathogens11060684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, is one of the leading infectious agents worldwide with a high rate of mortality. Following aerosol inhalation, M. tuberculosis primarily infects the alveolar macrophages, which results in a host immune response that gradually activates various antimicrobial mechanisms, including the production of reactive oxygen species (ROS), within the phagocytes to neutralize the bacteria. OxyR is the master regulator of oxidative stress response in several bacterial species. However, due to the absence of a functional oxyR locus in M. tuberculosis, the peroxidase stress is controlled by alkylhydroperoxidases. M. tuberculosis expresses alkylhydroperoxide reductase to counteract the toxic effects of ROS. In the current study, we report the functional characterization of an orthologue of alkylhydroperoxidase family member, Rv2159c, a conserved protein with putative peroxidase activity, during stress response and virulence of M. tuberculosis. We generated a gene knockout mutant of M. tuberculosis Rv2159c (MtbΔ2159) by specialized transduction. The MtbΔ2159 was sensitive to oxidative stress and exposure to toxic transition metals. In a human monocyte (THP-1) cell infection model, MtbΔ2159 showed reduced uptake and intracellular survival and increased expression of pro-inflammatory molecules, including IL-1β, IP-10, and MIP-1α, compared to the wild type M. tuberculosis and Rv2159c-complemented MtbΔ2159 strains. Similarly, in a guinea pig model of pulmonary infection, MtbΔ2159 displayed growth attenuation in the lungs, compared to the wild type M. tuberculosis and Rv2159c-complemented MtbΔ2159 strains. Our study suggests that Rv2159c has a significant role in maintaining the cellular homeostasis during stress and virulence of M. tuberculosis.
Collapse
|
5
|
Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis. Cell Signal 2022; 91:110238. [PMID: 34986388 DOI: 10.1016/j.cellsig.2021.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) remains a tremendous global public health concern. Deciphering the biology of the pathogen and its interaction with host can inspire new measures against tuberculosis. Phosphorylation plays versatile and important role in the pathogen and host physiology, such as virulence, signaling and immune response. Proteome-wide phosphorylation of Mtb and its infected host cells, namely phosphoproteome, can inform the post-translational modification of the interaction network between the pathogen and the host, key targets for novel antibiotics. We summarized the phosphoproteome of Mtb, as well as the host, focusing on potential application for new measures against tuberculosis.
Collapse
|
6
|
Yimer SA, Kalayou S, Homberset H, Birhanu AG, Riaz T, Zegeye ED, Lutter T, Abebe M, Holm-Hansen C, Aseffa A, Tønjum T. Lineage-Specific Proteomic Signatures in the Mycobacterium tuberculosis Complex Reveal Differential Abundance of Proteins Involved in Virulence, DNA Repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism. Front Microbiol 2020; 11:550760. [PMID: 33072011 PMCID: PMC7536270 DOI: 10.3389/fmicb.2020.550760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.
Collapse
Affiliation(s)
- Solomon Abebe Yimer
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Shewit Kalayou
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alemayehu Godana Birhanu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tahira Riaz
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ephrem Debebe Zegeye
- NORCE Norwegian Research Centre AS, Centre for Applied Biotechnology, Bergen, Norway
| | - Timo Lutter
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Carol Holm-Hansen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Bhargavi G, Hassan S, Balaji S, Tripathy SP, Palaniyandi K. Protein-protein interaction of Rv0148 with Htdy and its predicted role towards drug resistance in Mycobacterium tuberculosis. BMC Microbiol 2020; 20:93. [PMID: 32295519 PMCID: PMC7161113 DOI: 10.1186/s12866-020-01763-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis resides inside host macrophages during infection and adapts to resilient stresses generated by the host immune system. As a response, M. tuberculosis codes for short-chain dehydrogenases/reductases (SDRs). These SDRs are nicotinamide adenine dinucleotide-reliant oxidoreductases involved in cell homeostasis. The precise function of oxidoreductases in bacteria especially M. tuberculosis were not fully explored. This study aimed to know the detail functional role of one of the oxidoreductase Rv0148 in M. tuberculosis. RESULTS In silico analysis revealed that Rv0148 interacts with Htdy (Rv3389) and the protein interactions were confirmed using far western blot. Gene knockout mutant of Rv0148 in M. tuberculosis was constructed by specialized transduction. Macrophage cell line infection with this knockout mutant showed increased expression of pro-inflammatory cytokines. This knockout mutant is sensitive to oxidative, nitrogen, redox and electron transport inhibitor stress agents. Drug susceptibility testing of the deletion mutant showed resistance to first-line drugs such as streptomycin and ethambutol and second-line aminoglycosides such as amikacin and kanamycin. Based on interactorme analysis for Rv0148 using STRING database, we identified 220 most probable interacting partners for Htdy protein. In the Rv0148 knockout mutants, high expression of htdy was observed and we hypothesize that this would have perturbed the interactome thus resulting in drug resistance. Finally, we propose that Rv0148 and Htdy are functionally interconnected and involved in drug resistance and cell homeostasis of M. tuberculosis. CONCLUSIONS Our study suggests that Rv0148 plays a significant role in various functional aspects such as intermediatory metabolism, stress, homeostasis and also in drug resistance.
Collapse
Affiliation(s)
- Gunapati Bhargavi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Sameer Hassan
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Subramanyam Balaji
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Srikanth Prasad Tripathy
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India.
| |
Collapse
|
8
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
9
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
10
|
Caballero J, Morales-Bayuelo A, Navarro-Retamal C. Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. J Comput Aided Mol Des 2018; 32:1315-1336. [PMID: 30367309 DOI: 10.1007/s10822-018-0173-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022]
Abstract
In the last decades, human protein kinases (PKs) have been relevant as targets in the development of novel therapies against many diseases, but the study of Mycobacterium tuberculosis PKs (MTPKs) involved in tuberculosis pathogenesis began much later and has not yet reached an advanced stage of development. To increase knowledge of these enzymes, in this work we studied the structural features of MTPKs, with focus on their ATP-binding sites and their interactions with inhibitors. PknA, PknB, and PknG are the most studied MTPKs, which were previously crystallized; ATP-competitive inhibitors have been designed against them in the last decade. In the current work, reported PknA, PknB, and PknG inhibitors were extracted from literature and their orientations inside the ATP-binding site were proposed by using docking method. With this information, interaction fingerprints were elaborated, which reveal the more relevant residues for establishing chemical interactions with inhibitors. The non-crystallized MTPKs PknD, PknF, PknH, PknJ, PknK, and PknL were also studied; their three-dimensional structural models were developed by using homology modeling. The main characteristics of MTPK ATP-binding sites (the non-crystallized and crystallized MTPKs, including PknE and PknI) were accounted; schemes of the main polar and nonpolar groups inside their ATP-binding sites were constructed, which are suitable for a major understanding of these proteins as antituberculotic targets. These schemes could be used for establishing comparisons between MTPKs and human PKs in order to increase selectivity of MTPK inhibitors. As a key tool for guiding medicinal chemists interested in the design of novel MTPK inhibitors, our work provides a map of the structural elements relevant for the design of more selective ATP-competitive MTPK inhibitors.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.
| | - Alejandro Morales-Bayuelo
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
11
|
Venkatesan A, Palaniyandi K, Sharma D, Bisht D, Narayanan S. Characterization of FtsY, its interaction with Ffh, and proteomic identification of their potential substrates in Mycobacterium tuberculosis. Can J Microbiol 2018; 64:243-251. [PMID: 29361248 DOI: 10.1139/cjm-2017-0385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The universally conserved signal recognition particle (SRP) pathway that mediates co-translational targeting of membrane and secretory proteins is essential for eukaryotic and prokaryotic cells. The Mycobacterium tuberculosis SRP pathway consists of 2 proteins, Ffh and FtsY, and a 4.5S RNA molecule. Although the Escherichia coli SRP pathway is well studied, understanding of the M. tuberculosis SRP pathway components is very limited. In this study, we have overexpressed and characterized the M. tuberculosis SRP receptor (SR) FtsY as a GTP binding protein. Further, we established the direct protein-protein interaction between Ffh and FtsY. The Ffh-FtsY complex formation resulted in mutual stimulation of their GTP hydrolysis activity. We also attempted to biochemically characterize the SRP components by constructing the antisense gene knockdown strains of ffh and ftsY in M. tuberculosis. Loss of ffh and ftsY resulted in a decreased in vitro growth rate of the antisense ffh strain as compared with the antisense ftsY strain. Finally, 2-D gel electrophoresis of antisense depleted ffh and ftsY strains identified differential expression of 14 proteins.
Collapse
Affiliation(s)
- Arunkumar Venkatesan
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Kannan Palaniyandi
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Divakar Sharma
- b Department of Biochemistry, National JALMA Institute for Leprosy & other Mycobacterial Diseases, Dr. Matsuki Miyazaki Road, Tajganj, Agra 282004, India
| | - Deepa Bisht
- b Department of Biochemistry, National JALMA Institute for Leprosy & other Mycobacterial Diseases, Dr. Matsuki Miyazaki Road, Tajganj, Agra 282004, India
| | - Sujatha Narayanan
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| |
Collapse
|