1
|
Pascual-Morales E, Jiménez-Chávez P, Olivares-Grajales JE, Sarmiento-López L, García-Niño WR, López-López A, Goodwin PH, Palacios-Martínez J, Chávez-Martínez AI, Cárdenas L. Role of a LORELEI- like gene from Phaseolus vulgaris during a mutualistic interaction with Rhizobium tropici. PLoS One 2023; 18:e0294334. [PMID: 38060483 PMCID: PMC10703324 DOI: 10.1371/journal.pone.0294334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Reactive oxygen species (ROS), produced by NADPH oxidases known as RBOHs in plants, play a key role in plant development, biotic and abiotic stress responses, hormone signaling, and reproduction. Among the subfamily of receptor-like kinases referred to as CrRLK, there is FERONIA (FER), a regulator of RBOHs, and FER requires a GPI-modified membrane protein produced by LORELEI (LRE) or LORELEI-like proteins (LLG) to reach the plasma membrane and generate ROS. In Arabidopsis, AtLLG1 is involved in interactions with microbes as AtLLG1 interacts with the flagellin receptor (FLS2) to trigger the innate immune response, but the role of LLGs in mutualistic interactions has not been examined. In this study, two Phaseolus vulgaris LLG genes were identified, PvLLG2 that was expressed in floral tissue and PvLLG1 that was expressed in vegetative tissue. Transcripts of PvLLG1 increased during rhizobial nodule formation peaking during the early period of well-developed nodules. Also, P. vulgaris roots expressing pPvLLG1:GFP-GUS showed that this promoter was highly active during rhizobium infections, and very similar to the subcellular localization using a construct pLLG1::PvLLG1-Neon. Compared to control plants, PvLLG1 silenced plants had less superoxide (O2-) at the root tip and elongation zone, spotty hydrogen peroxide (H2O2) in the elongation root zone, and significantly reduced root hair length, nodule number and nitrogen fixation. Unlike control plants, PvLLG1 overexpressing plants showed superoxide beyond the nodule meristem, and significantly increased nodule number and nodule diameter. PvLLG1 appears to play a key role during this mutualistic interaction, possibly due to the regulation of the production and distribution of ROS in roots.
Collapse
Affiliation(s)
- Edgar Pascual-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pamela Jiménez-Chávez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan E. Olivares-Grajales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Sarmiento-López
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química Aplicada, Saltillo, Coahuila, México
| | - Wylly R. García-Niño
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Aline López-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana I. Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
3
|
Aono AH, Pimenta RJG, Dambroz CMDS, Costa FCL, Kuroshu RM, de Souza AP, Pereira WA. Genome-wide characterization of the common bean kinome: Catalog and insights into expression patterns and genetic organization. Gene 2023; 855:147127. [PMID: 36563714 DOI: 10.1016/j.gene.2022.147127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and expression patterns, modeled with coexpression networks for investigating putative interactions associated with stress response.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil.
| | | | | | | | - Reginaldo Massanobu Kuroshu
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil.
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil; Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil.
| | | |
Collapse
|
4
|
Escalante C, Sela N, Valverde RA. Transcriptome analysis of two near-isogenic lines of bell pepper ( Capsicum annuum) infected with bell pepper endornavirus and pepper mild mottle virus. Front Genet 2023; 14:1182578. [PMID: 37124621 PMCID: PMC10133535 DOI: 10.3389/fgene.2023.1182578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Center, Baton Rouge, LA, United States
- *Correspondence: Cesar Escalante,
| | - Noa Sela
- Department of Plant Pathology and Weed Research, The Volcani Center-ARO, Bet-Dagan, Israel
| | - Rodrigo A. Valverde
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Chen L, Guo C, Yan C, Sun R, Li Y. Genetic diversity and phylogenetic characteristics of viruses in lily plants in Beijing. Front Microbiol 2023; 14:1127235. [PMID: 37138632 PMCID: PMC10149822 DOI: 10.3389/fmicb.2023.1127235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Lily (Lilium) is an important bulbous perennial herb that is frequently infected by one or more viruses. To investigate the diversity of lily viruses, lilies with virus-like symptoms in Beijing were collected to perform small RNA deep sequencing. Then, the 12 complete and six nearly full-length viral genomes, including six known viruses and two novel viruses were determined. Based on sequence and phylogenetic analyses, two novel viruses were considered to be members of the genera Alphaendornavirus (Endornaviridae) and Polerovirus (Solemoviridae). These two novel viruses were provisionally named lily-associated alphaendornavirus 1 (LaEV-1) and lily-associated polerovirus 1 (LaPV-1). Based on sequence, phylogenetic and recombination analyses, strawberry latent ringspot virus (SLRSV) in the genus Stralarivirus (Secoviridae) was identified for the first time in China, and shown to exhibit the highest nucleotide (nt) diversity among the available full-length SLRSV genome sequences, with the highest identities of 79.5% for RNA1 and 80.9% for RNA2. Interestingly, the protease cofactor region in RNA1 was 752 aa in length, whereas those of the other 27 characterized isolates ranged from 700-719 aa in length. The genome sequences of lily virus A (Potyvirus), lily virus X (Potexvirus), and plantago asiatica mosaic virus (Potexvirus) exhibited varying degrees of sequence diversity at the nucleotide level compared with their corresponding characterized isolates. In addition, plantago asiatica mosaic virus (PlAMV) tended to cluster on a host species-basis. One identified lily mottle virus (Potyvirus) isolate was detected as a recombinant, and which clustered in a different group with four other isolates. Seven identified lily symptomless virus (Carlavirus) isolates, including one recombinant, were clustered into three clades. Our results revealed the genetic diversity of lily-infecting viruses, and sequence insertion, host species and recombination are factors that likely contribute to this diversity. Collectively, our results provide useful information regarding the control of viral disease in lily.
Collapse
Affiliation(s)
- Ling Chen
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Cheng Guo
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Chenge Yan
- College of Biological Science and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Rui Sun
- College of Biological Science and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Yongqiang Li
- College of Biological Science and Resources Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Yongqiang Li,
| |
Collapse
|
6
|
High-Throughput Sequencing Reveals Bell Pepper Endornavirus Infection in Pepper ( Capsicum annum) in Slovakia and Enables Its Further Molecular Characterization. PLANTS 2019; 9:plants9010041. [PMID: 31887986 PMCID: PMC7020154 DOI: 10.3390/plants9010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
Abstract
Ribosomal RNA-depleted total RNAs from a sweet pepper plant (Capsicum annuum, labelled as N65) grown in western Slovakia and showing severe virus-like symptoms (chlorosis, mottling and deformation of leaf lamina) were subjected to high-throughput sequencing (HTS) on an Illumina MiSeq platform. The de novo assembly of ca. 5.5 million reads, followed by mapping to the reference sequences, revealed the coinfection of pepper by several viruses; i.e., cucumber mosaic virus (CMV), watermelon mosaic virus (WMV), pepper cryptic virus 2 (PCV2) and bell pepper endornavirus (BPEV). A complete polyprotein-coding genomic sequence (14.6 kb) of BPEV isolate N65 was determined. A comparison of BPEV-N65 sequences with BPEV genomes available in GenBank showed 86.1% to 98.6% identity at the nucleotide level. The close phylogenetic relationship with isolates from India and China resulted in their distinct grouping compared to the other BPEV isolates. Further analysis has revealed the presence of BPEV in sweet or chili peppers obtained from various sources and locations in Slovakia (plants grown in gardens, greenhouse or retail shop). Additionally, the partial sequencing of two genomic portions from 15 BPEV isolates revealed that the Slovak isolates segregated into two molecular clusters, indicating a genetically distinct population (mean inter-group nucleotide divergence reaching 12.7% and 14.5%, respectively, based on the genomic region targeted). Due to the mix infections of BPEV-positive peppers by potato virus Y (PVY) and/or CMV, the potential role of individual viruses in the observed symptomatology could not be determined. This is the first evidence and characterization of BPEV from the central European region.
Collapse
|
7
|
Fukuhara T, Tabara M, Koiwa H, Takahashi H. Effect of asymptomatic infection with southern tomato virus on tomato plants. Arch Virol 2019; 165:11-20. [PMID: 31620899 DOI: 10.1007/s00705-019-04436-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Southern tomato virus (STV) is often found infecting healthy tomato plants (Solanum lycopersicum). In this study, we compared STV-free and STV-infected plants of cultivar M82 to determine the effect of STV infection on the host plant. STV-free plants exhibited a short and bushy phenotype, whereas STV-infected plants were taller. STV-infected plants produced more fruit than STV-free plants, and the germination rate of seeds from STV-infected plants was higher than that of seeds from STV-free plants. This phenotypic difference was also observed in progeny plants (siblings) derived from a single STV-infected plant in which the transmission rate of STV to progeny plants via the seeds was approximately 86%. These results suggest that the interaction between STV and host plants is mutualistic. Transcriptome analysis revealed that STV infection affects gene expression in the host plant and results in downregulation of genes involved in ethylene biosynthesis and signaling. STV-infected tomato plants might thus be artificially selected due to their superior traits as a crop.
Collapse
Affiliation(s)
- Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai, 980-0845, Japan
| |
Collapse
|
8
|
Genomic sequence of a novel endornavirus from Phaseolus vulgaris and occurrence in mixed infections with two other endornaviruses. Virus Res 2018; 257:63-67. [DOI: 10.1016/j.virusres.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
|
9
|
Physiological traits of endornavirus-infected and endornavirus-free common bean (Phaseolus vulgaris) cv Black Turtle Soup. Arch Virol 2018; 163:1051-1056. [DOI: 10.1007/s00705-018-3702-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/25/2017] [Indexed: 11/26/2022]
|
10
|
Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, Rajamäki ML, Nchimbi-Msolla S, Njau PJR, Mbanzibwa DR, Valkonen JPT. Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS One 2017; 12:e0178242. [PMID: 28542624 PMCID: PMC5444779 DOI: 10.1371/journal.pone.0178242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022] Open
Abstract
Common bean (Phaseolus vulgaris) is an annual grain legume that was domesticated in Mesoamerica (Central America) and the Andes. It is currently grown widely also on other continents including Africa. We surveyed seedborne viruses in new common bean varieties introduced to Nicaragua (Central America) and in landraces and improved varieties grown in Tanzania (eastern Africa). Bean seeds, harvested from Nicaragua and Tanzania, were grown in insect-controlled greenhouse or screenhouse, respectively, to obtain leaf material for virus testing. Equal amounts of total RNA from different samples were pooled (30-36 samples per pool), and small RNAs were deep-sequenced (Illumina). Assembly of the reads (21-24 nt) to contiguous sequences and searches for homologous viral sequences in databases revealed Phaseolus vulgaris endornavirus 1 (PvEV-1) and PvEV-2 in the bean varieties in Nicaragua and Tanzania. These viruses are not known to cause symptoms in common bean and are considered non-pathogenic. The small-RNA reads from each pool of samples were mapped to the previously characterized complete PvEV-1 and PvEV-2 sequences (genome lengths ca. 14 kb and 15 kb, respectively). Coverage of the viral genomes was 87.9-99.9%, depending on the pool. Coverage per nucleotide ranged from 5 to 471, confirming virus identification. PvEV-1 and PvEV-2 are known to occur in Phaseolus spp. in Central America, but there is little previous information about their occurrence in Nicaragua, and no information about occurrence in Africa. Aside from Cowpea mild mosaic virus detected in bean plants grown from been seeds harvested from one region in Tanzania, no other pathogenic seedborne viruses were detected. The low incidence of infections caused by pathogenic viruses transmitted via bean seeds may be attributable to new, virus-resistant CB varieties released by breeding programs in Nicaragua and Tanzania.
Collapse
Affiliation(s)
- Noora Nordenstedt
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Delfia Marcenaro
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Nicaraguan Institute of Agricultural Technology (CNIAB-INTA), Managua, Nicaragua
| | - Daudi Chilagane
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Beatrice Mwaipopo
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | | | | | | | | | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|