1
|
Wang R, Xiao J, Wang Q, Zhao W, Liu X, Liu Y, Fu S. Genomic analysis of a new type VI secretion system in Vibrio parahaemolyticus and its implications for environmental adaptation in shrimp ponds. Can J Microbiol 2023; 69:53-61. [PMID: 36343341 DOI: 10.1139/cjm-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The type VI secretion system (T6SS) in Vibrio spp. is often used to kill heteroclonal neighbors by direct injection of toxic effectors, but its strategies in aquacultural environments receive limited attention. In this study, we conducted genomic analysis for a T6SS-harboring plasmid in V. parahaemolyticus strain VP157. Coculture assays were further conducted to verify its antibacterial function. The results showed that strain VP157 harbored a 132-kb plasmid, pVP157-1, which consists of two fragments: an 87.8-kb fragment identical to plasmid pTJ114-1 and a 44.2-kb T6SS gene cluster with only 4% DNA identity to T6SS1 in the V. parahaemolyticus reference genome. Gene-by-gene analysis of six genes representing core T6SS components suggested that each gene has distinct evolutionary origins. In vitro experimental evolution revealed that pVP157-1 can excise from the VP157 genome with an excision rate of 4%. A coculture assay suggested that strain VP157 had significantly higher antibacterial activity against Bacillus pumilus and V. cholerae than the strain without pVP157-1(VP157∆T6SS). In contrast, a rapid decline was observed for the proportion of VP157∆ T6SS in a mock microbial community, which decreased from 10.7% to 2.1% in 5 days. The results highlighted that the acquisition of T6SS fostered the fitness of V . parahaemolyticus in a complex environment.
Collapse
Affiliation(s)
- Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.,Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China
| | - Jinzhou Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qingyao Wang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China
| | - Wenyu Zhao
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xinyue Liu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China
| | - Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, China
| |
Collapse
|
2
|
Eslami Rasekh M, Hernández Y, Drinan SD, Fuxman Bass J, Benson G. Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences. Nucleic Acids Res 2021; 49:4308-4324. [PMID: 33849068 PMCID: PMC8096271 DOI: 10.1093/nar/gkab224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.
Collapse
Affiliation(s)
| | - Yözen Hernández
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Juan I Fuxman Bass
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gary Benson
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Computer Science, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Epidemiology characteristics of the clonal complexes of Mycobacterium tuberculosis Lineage 4 in China. INFECTION GENETICS AND EVOLUTION 2020; 84:104363. [PMID: 32413573 DOI: 10.1016/j.meegid.2020.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/18/2020] [Accepted: 05/09/2020] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) Lineage 4 (L4) is frequently prevailing in Western regions of China, where the tuberculosis incidence rate is high. However, the epidemiology characteristics of M. tuberculosis L4 in China remain poorly understood. Here, the 15-loci Variable number of tandem repeats (VNTR) patterns of 975 L4 isolates from a National Survey of Tuberculosis in China were used to construct a Minimum Spanning Tree (MST), which divided the 975 isolates into 5 major clonal complexes (CC; named CC1 to CC5). We found that the CCs of M. tuberculosis L4 were nationally distributed, geographically restricted, and different in epidemiology characteristics. For example, CC1 was mainly concentrated in East and Central China and significantly related to the farmer occupation and income of an individual (>4200 yuan) (p < .05); CC5 was mainly distributed in Southwest China and was associated with ethnic minorities. Notably, using whole genome sequencing (WGS) data of 141 strains that matched our samples, we found that both CC1 and CC5 were mapped to the sublineage L4.5. Nevertheless, due to the difference of geographical distribution, the epidemiology characteristics of these CCs were largely different. We found that income and occupation significantly contributed to the odds of infection by CC1 to CC5. Consequently, our findings revealed the epidemiology characteristics of the CCs of M. tuberculosis L4, and will help in the formulation of more effective intervention measures in line with regional specifications and patient characteristics in China.
Collapse
|
4
|
Sotomayor C, Wang Q, Arnott A, Howard P, Hope K, Lan R, Sintchenko V. Novel Salmonella enterica Serovar Typhimurium Genotype Levels as Herald of Seasonal Salmonellosis Epidemics. Emerg Infect Dis 2019; 24:1079-1082. [PMID: 29774859 PMCID: PMC6004855 DOI: 10.3201/eid2406.171096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We examined the population dynamics of Salmonella enterica serovar Typhimurium during seasonal salmonellosis epidemics in New South Wales, Australia, during 2009–2016. Of 15,626 isolates, 5%–20% consisted of novel genotypes. Seasons with salmonellosis epidemics were associated with a reduction in novel genotypes in the preceding winter and spring.
Collapse
|
5
|
Ricke SC, Kim SA, Shi Z, Park SH. Molecular-based identification and detection of Salmonella in food production systems: current perspectives. J Appl Microbiol 2018; 125:313-327. [PMID: 29675864 DOI: 10.1111/jam.13888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies have greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed.
Collapse
Affiliation(s)
- S C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S A Kim
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Z Shi
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S H Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
6
|
Octavia S, Ang MLT, La MV, Zulaina S, Saat ZAAS, Tien WS, Han HK, Ooi PL, Cui L, Lin RTP. Retrospective genome-wide comparisons of Salmonella enterica serovar Enteritidis from suspected outbreaks in Singapore. INFECTION GENETICS AND EVOLUTION 2018; 61:229-233. [PMID: 29625239 DOI: 10.1016/j.meegid.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 11/25/2022]
Abstract
The number of salmonellosis cases in Singapore has increased over the years. Salmonella enterica serovar Enteritidis has always been the most predominant serovar in the last five years. The National Public Health Laboratory assisted outbreak investigations by performing multilocus variable number tandem repeat analysis (MLVA) on isolates that were collected at the time of the investigations. Isolates were defined as belonging to a particular cluster if they had identical MLVA patterns. Whilst MLVA has been instrumental in outbreak investigations, it may not be useful when outbreaks are caused by an endemic MLVA type. In this study, we analysed 67 isolates from 12 suspected outbreaks with known epidemiological links to explore the use of next-generation sequencing (NGS) for defining outbreaks. We found that NGS can confidently group isolates into their respective outbreaks. The isolates from each suspected outbreak were closely related and differed by a maximum of 3 single nucleotide polymorphisms (SNPs). They were also clearly separated from isolates that belonged to different suspected outbreaks. This study provides an important insight and further evidence on the value of NGS for routine surveillance and outbreak detection of S. Enteritidis.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, Ministry of Health, Singapore.
| | - Michelle L T Ang
- National Public Health Laboratory, Ministry of Health, Singapore
| | - My Van La
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Siti Zulaina
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Zul Azri As Saad Saat
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Wee Siong Tien
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Hwi Kwang Han
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Peng Lim Ooi
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Lin Cui
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore
| |
Collapse
|
7
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|