1
|
Iijima H, Watanabe A, Sukigara H, Shirai T, Kondo A, Osanai T. Simultaneous increases in the levels of compatible solutes by cost-effective cultivation of Synechocystis sp. PCC 6803. Biotechnol Bioeng 2020; 117:1649-1660. [PMID: 32129469 DOI: 10.1002/bit.27324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L-1 ·day-1 , exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.
Collapse
Affiliation(s)
- Hiroko Iijima
- Department of Agricultural Chemistrym School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Atsuko Watanabe
- Department of Agricultural Chemistrym School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Haruna Sukigara
- Department of Agricultural Chemistrym School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Takashi Osanai
- Department of Agricultural Chemistrym School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
2
|
Gordon GC, Pfleger BF. Regulatory Tools for Controlling Gene Expression in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1080:281-315. [PMID: 30091100 PMCID: PMC6662922 DOI: 10.1007/978-981-13-0854-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are attractive hosts for converting carbon dioxide and sunlight into desirable chemical products. To engineer these organisms and manipulate their metabolic pathways, the biotechnology community has developed genetic tools to control gene expression. Many native cyanobacterial promoters and related sequence elements have been used to regulate genes of interest, and heterologous tools that use non-native small molecules to induce gene expression have been demonstrated. Overall, IPTG-based induction systems seem to be leaky and initially demonstrate small dynamic ranges in cyanobacteria. Consequently, a variety of other induction systems have been optimized to enable tighter control of gene expression. Tools require significant optimization because they function quite differently in cyanobacteria when compared to analogous use in model heterotrophs. We hypothesize that these differences are due to fundamental differences in physiology between organisms. This review is not intended to summarize all known products made in cyanobacteria nor the performance (titer, rate, yield) of individual strains, but instead will focus on the genetic tools and the inherent aspects of cellular physiology that influence gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Xu C, Sun T, Li S, Chen L, Zhang W. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:205. [PMID: 30061927 PMCID: PMC6058365 DOI: 10.1186/s13068-018-1205-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cadmium has been a significant threat to environment and human health due to its high toxicity and wide application in fossil-fuel burning and battery industry. Cyanobacteria are one of the most dominant prokaryotes, and the previous studies suggested that they could be valuable in removing Cd2+ from waste water. However, currently, the tolerance to cadmium is very low in cyanobacteria. To further engineer cyanobacteria for the environmental application, it is thus necessary to determine the mechanism that they respond to high concentration of cadmium. RESULTS In this study, a robust strain of Synechocystis PCC 6803 (named ALE-9.0) tolerant to CdSO4 with a concentration up to 9.0 µM was successfully isolated via adaptive laboratory evolution over 802-day continuous passages under cadmium stress. Whole-genome re-sequencing was then performed and nine mutations were identified for the evolved strain compared to the wild-type strain. Among these mutations, a large fragment deletion in slr0454 encoding a cation or drug efflux system protein was found to contribute directly to the resistance to Cd2+ stress. In addition, five other mutations were also demonstrated related to the improved Cd2+ tolerance in ALE-9.0. Moreover, the evolved ALE-9.0 strain was found to obtain cross tolerance to some other heavy metals like zinc and cobalt as well as higher resistance to high light. CONCLUSIONS The work here identified six genes and their mutations related to Cd2+ tolerance in Synechocystis PCC 6803, and demonstrated the feasibility of adaptive laboratory evolution in tolerance modifications. This work also provided valuable information regarding the cadmium tolerance mechanism in Synechocystis PCC 6803, and useful insights for cyanobacterial robustness and tolerance engineering.
Collapse
Affiliation(s)
- Chunxiao Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
4
|
Sun T, Chen L, Zhang W. Quantitative Proteomics Reveals Potential Crosstalk between a Small RNA CoaR and a Two-Component Regulator Slr1037 in Synechocystis sp. PCC6803. J Proteome Res 2017; 16:2954-2963. [PMID: 28677390 DOI: 10.1021/acs.jproteome.7b00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial small RNAs (sRNAs) and two-component systems (TCSs) were two vital regulatory mechanisms employed by microorganisms to respond to environmental changes and stresses. As a promising "autotrophic cell factory", photosynthetic cyanobacteria have attracted a lot of attention these years. Although most studies focused on studying the roles of sRNAs or TCS regulators in stress response in photosynthetic cyanobacteria, limited work has elucidated their potential crosstalk. Our previous work has identified a negative sRNA regulator CoaR and a positive response regulator Slr1037 both related to 1-butanol stress regulation in Synechocystis sp. PCC6803. In this work, the potential crosstalk between CoaR and Slr1307 (i.e., the coregulated genes mediated by CoaR and Slr1037) was identified and validated through quantitative proteomics and quantitative real-time PCR (qRT-PCR), respectively. The results showed that the sensitive phenotype to 1-butanol of Δslr1037 could be rescued by suppressing coaR in Δslr1037, probably due to the fact that some target genes of Slr1037 could be reactivated by repression of CoaR. Twenty-eight coregulated proteins mediated by CoaR and Slr1037 were found through quantitative proteomics, and 10 of the annotated proteins were validated via qRT-PCR. This study proved the existence of crosstalk between sRNAs and response regulators and provided new insights into the coregulation of biofuel resistance in cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China.,Center for Biosafety Research and Strategy, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|