1
|
Gilbert NE, Kimbrel JA, Samo TJ, Siccardi AJ, Stuart RK, Mayali X. A bloom of a single bacterium shapes the microbiome during outdoor diatom cultivation collapse. mSystems 2025:e0037525. [PMID: 40366134 DOI: 10.1128/msystems.00375-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Algae-dominated ecosystems are fundamentally influenced by their microbiome. We lack information on the identity and function of bacteria that specialize in consuming algal-derived dissolved organic matter in high algal density ecosystems such as outdoor algal ponds used for biofuel production. Here, we describe the metagenomic and metaproteomic signatures of a single bacterial strain that bloomed during a population-wide crash of the diatom, Phaeodactylum tricornutum, grown in outdoor ponds. 16S rRNA gene data indicated that a single Kordia sp. strain (family Flavobacteriaceae) contributed up to 93% of the bacterial community during P. tricornutum demise. Kordia sp. expressed proteins linked to microbial antagonism and biopolymer breakdown, which likely contributed to its dominance over other microbial taxa during diatom demise. Analysis of accompanying downstream microbiota (primarily of the Rhodobacteraceae family) provided evidence that cross-feeding may be a pathway supporting microbial diversity during diatom demise. In situ and laboratory data with a different strain suggested that Kordia was a primary degrader of biopolymers during algal demise, and co-occurring Rhodobacteraceae exploited degradation molecules for carbon. An analysis of 30 Rhodobacteraceae metagenome assembled genomes suggested that algal pond Rhodobacteraceae commonly harbored pathways to use diverse carbon and energy sources, including carbon monoxide, which may have contributed to the prevalence of this taxonomic group within the ponds. These observations further constrain the roles of functionally distinct heterotrophic bacteria in algal microbiomes, demonstrating how a single dominant bacterium, specialized in processing senescing or dead algal biomass, shapes the microbial community of outdoor algal biofuel ponds.IMPORTANCEAquatic biogeochemical cycles are dictated by the activity of diverse microbes inhabiting the algal microbiome. Outdoor biofuel ponds provide a setting analogous to aquatic algal blooms, where monocultures of fast-growing algae reach high cellular densities. Information on the microbial ecology of this setting is lacking, and so we employed metagenomics and metaproteomics to understand the metabolic roles of bacteria present within four replicated outdoor ponds inoculated with the diatom Phaeodactylum tricornutum. Unexpectedly, after 29 days of cultivation, all four ponds crashed concurrently with a "bloom" of a single taxon assigned to the Kordia bacterial genus. We assessed how this dominant taxon influenced the chemical and microbial fate of the ponds following the crash, with the hypothesis that it was primarily responsible for processing senescent/dead algal biomass and providing the surrounding microbiota with carbon. Overall, these findings provide insight into the roles of microbes specialized in processing algal organic matter and enhance our understanding of biofuel pond microbial ecology.
Collapse
Affiliation(s)
- Naomi E Gilbert
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anthony J Siccardi
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
| | - Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Ayoub N, Djabeur N, Harder D, Jeckelmann JM, Ucurum Z, Hirschi S, Fotiadis D. Actinorhodopsin: an efficient and robust light-driven proton pump for bionanotechnological applications. Sci Rep 2025; 15:4054. [PMID: 39900604 PMCID: PMC11790970 DOI: 10.1038/s41598-025-88055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Actinorhodopsins are encoded by a distinct group of microbial rhodopsin (MR) genes predominant in non-marine actinobacteria. Despite their role in the global energy cycle and potential for bionanotechnological applications, our understanding of actinorhodopsin proteins is limited. Here, we characterized the actinorhodopsin RlActR from the freshwater actinobacterium Rhodoluna lacicola, which conserves amino acid residues critical for light-driven proton pumping found in MRs. RlActR was efficiently overexpressed in Escherichia coli in milligram amounts and isolated with high purity and homogeneity. The purified RlActR absorbed green light and its primary proton acceptor exhibited a mildly acidic apparent pKa. Size-exclusion chromatography of RlActR purified in the relatively mild and harsh detergents 5-cyclohexyl-1-pentyl-β-D-maltoside and n-octyl-β-D-glucopyranoside revealed highly homogeneous oligomers and no disruption into monomers, indicating significant robustness of the RlActR oligomer. Cryo-electron microscopy and 2D classification of protein particles provided a projection structure identifying the oligomeric state of RlActR as a pentamer. Efficient establishment of a proton gradient across lipid membranes upon light illumination was demonstrated using RlActR-overexpressing E. coli cells and reconstituted RlActR proteoliposomes. In summary, these features make RlActR an attractive energizing building block for the bottom-up assembly of molecular systems for bionanotechnological applications.
Collapse
Affiliation(s)
- Nooraldeen Ayoub
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Nadia Djabeur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
3
|
Zhang X, Wu K, Han Z, Chen Z, Liu Z, Sun Z, Shao L, Zhao Z, Zhou L. Microbial diversity and biogeochemical cycling potential in deep-sea sediments associated with seamount, trench, and cold seep ecosystems. Front Microbiol 2022; 13:1029564. [PMID: 36386615 PMCID: PMC9650238 DOI: 10.3389/fmicb.2022.1029564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2023] Open
Abstract
Due to their extreme water depths and unique physicochemical conditions, deep-sea ecosystems develop uncommon microbial communities, which play a vital role in biogeochemical cycling. However, the differences in the compositions and functions of the microbial communities among these different geographic structures, such as seamounts (SM), marine trenches (MT), and cold seeps (CS), are still not fully understood. In the present study, sediments were collected from SM, MT, and CS in the Southwest Pacific Ocean, and the compositions and functions of the microbial communities were investigated by using amplicon sequencing combined with in-depth metagenomics. The results revealed that significantly higher richness levels and diversities of the microbial communities were found in SM sediments, followed by CS, and the lowest richness levels and diversities were found in MT sediments. Acinetobacter was dominant in the CS sediments and was replaced by Halomonas and Pseudomonas in the SM and MT sediments. We demonstrated that the microbes in deep-sea sediments were diverse and were functionally different (e.g., carbon, nitrogen, and sulfur cycling) from each other in the seamount, trench, and cold seep ecosystems. These results improved our understanding of the compositions, diversities and functions of microbial communities in the deep-sea environment.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liyi Shao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol 2021; 97:5974270. [PMID: 33175111 DOI: 10.1093/femsec/fiaa227] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 01/04/2023] Open
Abstract
Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1049-001, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, CA 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 Berkeley, USA
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,School of Science, University of Waikato, Gate 1, Knighton Road 3240, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Steele Ocean Sciences Building, Dalhousie University 1355 Oxford St., B3H4R2 Halifax, NS, Canada
| |
Collapse
|
5
|
Genome characteristics of Kordia antarctica IMCC3317 T and comparative genome analysis of the genus Kordia. Sci Rep 2020; 10:14715. [PMID: 32895436 PMCID: PMC7477175 DOI: 10.1038/s41598-020-71328-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Abstract
The genus Kordia is one of many genera affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes, well known for its degradation of high molecular weight organic matters. The genus Kordia currently comprises eight species, type strains of which have been isolated from a diverse range of marine environments. As of this report, four genome sequences have been submitted for cultured strains of Kordia, but none are complete nor have they been analyzed comprehensively. In this study, we report the complete genome of Kordia antarctica IMCC3317T, isolated from coastal seawater off the Antarctic Peninsula. The complete genome of IMCC3317T consists of a single circular chromosome with 5.5 Mbp and a 33.2 mol% of G+C DNA content. The IMCC3317T genome showed features typical of chemoheterotrophic marine bacteria and similar to other Kordia genomes, such as complete gene sets for the Embden–Meyerhof–Parnas glycolysis pathway, tricarboxylic acid cycle and oxidative phosphorylation. The genome also encoded many carbohydrate-active enzymes, some of which were clustered into approximately seven polysaccharide utilization loci, thereby demonstrating the potential for polysaccharide utilization. Finally, a nosZ gene encoding nitrous oxide reductase, an enzyme that catalyzes the reduction of N2O to N2 gas, was also unique to the IMCC3317T genome.
Collapse
|
6
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
7
|
Royo-Llonch M, Sánchez P, González JM, Pedrós-Alió C, Acinas SG. Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 2019; 43:126045. [PMID: 31831198 DOI: 10.1016/j.syapm.2019.126045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
Collapse
Affiliation(s)
- M Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - P Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - J M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - C Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - S G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|