1
|
Diao J, Tian Y, Hu Y, Moon TS. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol 2025; 43:620-646. [PMID: 39581772 DOI: 10.1016/j.tibtech.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA.
| | - Yuxin Tian
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yifeng Hu
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Li X, Gluth A, Feng S, Qian WJ, Yang B. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:180. [PMID: 37986172 PMCID: PMC10662689 DOI: 10.1186/s13068-023-02424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Rhodococci are studied for their bacterial ligninolytic capabilities and proclivity to accumulate lipids. Lignin utilization is a resource intensive process requiring a variety of redox active enzymes and cofactors for degradation as well as defense against the resulting toxic byproducts and oxidative conditions. Studying enzyme expression and regulation between carbon sources will help decode the metabolic rewiring that stymies lignin to lipid conversion in these bacteria. Herein, a redox proteomics approach was applied to investigate a fundamental driver of carbon catabolism and lipid anabolism: redox balance. RESULTS A consortium of Rhodococcus strains was employed in this study given its higher capacity for lignin degradation compared to monocultures. This consortium was grown on glucose vs. lignin under nitrogen limitation to study the importance of redox balance as it relates to nutrient availability. A modified bottom-up proteomics workflow was harnessed to acquire a general relationship between protein abundance and protein redox states. Global proteomics results affirm differential expression of enzymes involved in sugar metabolism vs. those involved in lignin degradation and aromatics metabolism. As reported previously, several enzymes in the lipid biosynthetic pathways were downregulated, whereas many involved in β-oxidation were upregulated. Interestingly, proteins involved in oxidative stress response were also upregulated perhaps in response to lignin degradation and aromatics catabolism, which require oxygen and reactive oxygen species and generate toxic byproducts. Enzymes displaying little-to-no change in abundance but differences in redox state were observed in various pathways for carbon utilization (e.g., β‑ketoadipate pathway), lipid metabolism, as well as nitrogen metabolism (e.g., purine scavenging/synthesis), suggesting potential mechanisms of redox-dependent regulation of metabolism. CONCLUSIONS Efficient lipid production requires a steady carbon and energy flux while balancing fundamental requirements for enzyme production and cell maintenance. For lignin, we theorize that this balance is difficult to establish due to resource expenditure for enzyme production and stress response. This is supported by significant changes to protein abundances and protein cysteine oxidation in various metabolic pathways and redox processes.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Austin Gluth
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
3
|
Grechishnikova EG, Shemyakina AO, Novikov AD, Lavrov KV, Yanenko AS. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform. Crit Rev Biotechnol 2023; 43:835-850. [PMID: 35786136 DOI: 10.1080/07388551.2022.2091976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
Abstract
Rhodococcus bacteria are a fast-growing platform for biocatalysis, biodegradation, and biosynthesis, but not a platform for molecular biology. That is, Rhodococcus are not convenient for genetic engineering. One major issue for the engineering of Rhodococcus is the absence of a publicly available, curated, and commented collection of sequences of genetic parts that are functional in biotechnologically relevant species of Rhodococcus (R. erythropolis, R. rhodochrous, R. ruber, and R. jostii). Here, we present a collection of genetic parts for Rhodococcus (vector replicons, promoter regions, regulators, markers, and reporters) supported by a thorough analysis of their functionality. We also highlight and discuss the gaps in Rhodococcus-related genetic parts and techniques, which should be filled in order to make these bacteria a full-fledged molecular biology platform independent of Escherichia coli. We conclude that all major types of required genetic parts for Rhodococcus are available now, except multicopy replicons. As for model Rhodococcus strains, there is a particular shortage of strains with high electrocompetence levels and strains designed for solving specific genetic engineering tasks. We suggest that these obstacles are surmountable in the near future due to an intensification of research work in the field of genetic techniques for non-conventional bacteria.
Collapse
Affiliation(s)
- Elena G Grechishnikova
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Anna O Shemyakina
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Andrey D Novikov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Konstantin V Lavrov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Alexander S Yanenko
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
4
|
Livieri AL, Colaccini F, Hernández MA, Gago G, Alvarez HM, Gramajo H, Rodriguez E. Genetic analysis of acyl-CoA carboxylases involved in lipid accumulation in Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12674-2. [PMID: 37439834 DOI: 10.1007/s00253-023-12674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.
Collapse
Affiliation(s)
- Andrea L Livieri
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Facundo Colaccini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martin A Hernández
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Gabriela Gago
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor M Alvarez
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
5
|
Donini E, Firrincieli A, Cappelletti M. Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol (Praha) 2021; 66:701-713. [PMID: 34215934 PMCID: PMC8449775 DOI: 10.1007/s12223-021-00892-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/12/2021] [Indexed: 11/04/2022]
Abstract
Rhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.
Collapse
Affiliation(s)
- Eva Donini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
6
|
Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021; 26:molecules26164871. [PMID: 34443455 PMCID: PMC8401914 DOI: 10.3390/molecules26164871] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Collapse
|
7
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
8
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
9
|
Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS. Insights into the Metabolism of Oleaginous Rhodococcus spp. Appl Environ Microbiol 2019; 85:e00498-19. [PMID: 31324625 PMCID: PMC6715851 DOI: 10.1128/aem.00498-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some species belonging to the Rhodococcus genus, such as Rhodococcus opacus, R. jostii, and R. wratislaviensis, are known to be oleaginous microorganisms, since they are able to accumulate triacylglycerols (TAG) at more than 20% of their weight (dry weight). Oleaginous rhodococci are promising microbial cell factories for the production of lipids to be used as fuels and chemicals. Cells could be engineered to create strains capable of producing high quantities of oils from industrial wastes and a variety of high-value lipids. The comprehensive understanding of carbon metabolism and its regulation will contribute to the design of a reliable process for bacterial oil production. Bacterial oleagenicity requires an integral configuration of metabolism and regulatory processes rather than the sole existence of an efficient lipid biosynthesis pathway. In recent years, several studies have been focused on basic aspects of TAG biosynthesis and accumulation using R. opacus PD630 and R. jostii RHA1 strains as models of oleaginous bacteria. The combination of results obtained in these studies allows us to propose a metabolic landscape for oleaginous rhodococci. In this context, this article provides a comprehensive and integrative view of different metabolic and regulatory attributes and innovations that explain the extraordinary ability of these bacteria to synthesize and accumulate TAG. We hope that the accessibility to such information in an integrated way will help researchers to rationally select new targets for further studies in the field.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - O Marisa Herrero
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Martín A Hernández
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P Lanfranconi
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Maria S Villalba
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|