1
|
Morgan HJ, Olivero C, Shorning BY, Gibbs A, Phillips AL, Ananthan L, Lim AXH, Martuscelli L, Borgogna C, De Andrea M, Hufbauer M, Goodwin R, Akgül B, Gariglio M, Patel GK. HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses. JCI Insight 2024; 9:e177898. [PMID: 38916963 PMCID: PMC11383611 DOI: 10.1172/jci.insight.177898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Despite epidermal turnover, the skin is host to a complex array of microbes, including viruses, such as HPV, which must infect and manipulate skin keratinocyte stem cells (KSCs) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induced ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses. Together, these results define the "hit-and-run" mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lack melanosome protection and are thus susceptible to sun light-induced malignant transformation.
Collapse
Affiliation(s)
- Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Boris Y Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alexandra L Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lokapriya Ananthan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Annabelle Xiao Hui Lim
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Licia Martuscelli
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Cinzia Borgogna
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin Medical School, Turin, Italy
- Intrinsic Immunity Unit, Translational Research Centre for Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara, Italy
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Richard Goodwin
- Department of Dermatology, Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, United Kingdom
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Marisa Gariglio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Wu AYT, Sekar P, Huang DY, Hsu SH, Chan CM, Lin WW. Spatiotemporal roles of AMPK in PARP-1- and autophagy-dependent retinal pigment epithelial cell death caused by UVA. J Biomed Sci 2023; 30:91. [PMID: 37936170 PMCID: PMC10629085 DOI: 10.1186/s12929-023-00978-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.
Collapse
Affiliation(s)
- Anthony Yan-Tang Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Bordeaux ZA, Choi J, Braun G, Davis C, Marani M, Lee K, Samuel C, Adams J, Windom R, Pollizzi A, Kambala A, Cornman H, Reddy SV, Lu W, Oladipo OO, Alphonse MP, West CE, Kwatra SG, Kwatra MM. Topical GZ21T Inhibits the Growth of Actinic Keratoses in a UVB-Induced Model of Skin Carcinogenesis. JID INNOVATIONS 2023; 3:100206. [PMID: 37533581 PMCID: PMC10392087 DOI: 10.1016/j.xjidi.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 08/04/2023] Open
Abstract
Actinic keratoses (AKs) are premalignant intraepidermal neoplasms that occur as a result of cumulative sun damage. AKs commonly relapse, and up to 16% undergo malignant transformation into cutaneous squamous cell carcinoma. There is a need for novel therapies that reduce the quantity and surface area of AKs as well as prevent malignant transformation to cutaneous squamous cell carcinomas. We recently showed that GZ17-6.02, an anticancer agent composed of curcumin, haramine, and isovanillin, inhibited the growth of H297.T cells. This study evaluated the efficacy of a topical formulation of GZ17-6.02, known as GZ21T, in a murine model of AK generated by exposing SKH1 mice to UVR. Treatment of mice with topical GZ21T inhibited the growth of AKs by decreasing both lesion count (P = 0.012) and surface area occupied by tumor (P = 0.002). GZ21T also suppressed the progression of AKs to cutaneous squamous cell carcinoma by decreasing the count (P = 0.047) and surface area (P = 0.049) of lesions more likely to represent cutaneous squamous cell carcinoma. RNA sequencing and proteomic analyses revealed that GZ21T suppressed several pathways, including MAPK (P = 0.025), phosphoinositide 3-kinase-protein kinase B (P = 0.04), HIF-1α (P = 0.016), Wnt (P = 0.025), insulin (P = 0.018), and ERBB (P = 0.016) signaling. GZ21T also upregulated the autophagy-promoting protein AMPK while suppressing proteins such as PD-L1, glutaminase, pAkt1 S473, and eEF2K.
Collapse
Affiliation(s)
- Zachary A. Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Cole Davis
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christeen Samuel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jackson Adams
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Reed Windom
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Anthony Pollizzi
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sriya V. Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olusola O. Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cameron E. West
- Genzada Pharmaceuticals, Hutchinson, Kansas, USA
- US Dermatology Partners, Dallas, Texas, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, South Carolina, USA
| |
Collapse
|
4
|
Choi J, West CE, Roh YS, Sutaria N, Kwatra SG, Kwatra MM. Mouse models for actinic keratoses. J Pharmacol Toxicol Methods 2021; 110:107071. [PMID: 33933627 DOI: 10.1016/j.vascn.2021.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Actinic keratoses (AKs) represent a premalignant skin condition due to chronic sun damage that dramatically increases in prevalence in the aging population. Currently, animal models of AKs utilize photocarcinogenesis, chemical carcinogens, or targeted gene modulation, and each method possesses unique strengths and weaknesses. Models using photodamage most comprehensively describe methods for preferentially selecting AK lesions, while replicating the pathogenesis of AKs with greater fidelity than models utilizing other carcinogenic methods. The following review of current murine models of AKs will aid in the selection of mouse models appropriate for future in vivo studies to test the efficacy of novel therapeutic agents for the treatment of AKs.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Youkyung S Roh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
β-HPV 8E6 Attenuates ATM and ATR Signaling in Response to UV Damage. Pathogens 2019; 8:pathogens8040267. [PMID: 31779191 PMCID: PMC6963835 DOI: 10.3390/pathogens8040267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Given the high prevalence of cutaneous genus beta human papillomavirus (β-HPV) infections, it is important to understand how they manipulate their host cells. This is particularly true for cellular responses to UV damage, since our skin is continually exposed to UV. The E6 protein from β-genus HPV (β-HPV E6) decreases the abundance of two essential UV-repair kinases (ATM and ATR). Although β-HPV E6 reduces their availability, the impact on downstream signaling events is unclear. We demonstrate that β-HPV E6 decreases ATM and ATR activation. This inhibition extended to XPA, an ATR target necessary for UV repair, lowering both its phosphorylation and accumulation. β-HPV E6 also hindered POLη accumulation and foci formation, critical steps in translesion synthesis. ATM’s phosphorylation of BRCA1 is also attenuated by β-HPV E6. While there was a striking decrease in phosphorylation of direct ATM/ATR targets, events further down the cascade were not reduced. In summary, despite being incomplete, β-HPV 8E6’s hindrance of ATM/ATR has functional consequences.
Collapse
|
6
|
A comparison of the detection of biomarkers in infections due to low risk versus high-risk human papillomavirus types. Ann Diagn Pathol 2019; 41:57-61. [PMID: 31132653 DOI: 10.1016/j.anndiagpath.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
Adjunctive immunohistochemistry tests for human papillomavirus (HPV) infection include p16 and Ki67 as well as the more recently discovered biomarkers importin-β, exportin-5, Mcl1, and PDL1. The purpose of this study was to compare the expression of these biomarkers in HPV infection due to the high-risk types such as HPVs 16, 18, 31, 33, 35, and 51 versus lesions that contain the low risk types HPV 2, 6 or 11. We studied 35 lesions with low risk HPV types (verruca vulgaris = 10 cases, condyloma acuminatum = 15 cases, CIN 1 with HPV 6/11 = 10 cases) and 25 CIN 1 or 2 lesions with a high-risk HPV type. The 25 high-risk positive CIN 1-2 cases had strong expression of the panel p16, Ki67, importin-β, exportin-5, Mcl1, and PDL1 where each protein localized to the cells in the parabasal aspect of the lesion. In comparison, neither p16, importin-β, exportin-5, Mcl1, nor PDL1 were increased in the epithelia of the lesions with the low risk HPV types; Ki67 showed variable expression. HPV viral capsid L1 protein and viral DNA were excellent markers of infection in the lesions with low risk types. Thus, p16, importin-β, exportin-5, Mcl1, and PDL1 are not only biomarkers of high-risk HPV infection but can also differentiate such lesions from those that contain low risk HPV types. Low risk HPV infections can be best differentiated from their mimics by viral L1 capsid detection and/or HPV DNA by in situ hybridization.
Collapse
|
7
|
Nuovo G, Nicol A, de Andrade CV, Magro C. New biomarkers of human papillomavirus infection in epidermodysplasia verruciformis. Ann Diagn Pathol 2019; 40:81-87. [PMID: 31075668 DOI: 10.1016/j.anndiagpath.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022]
Abstract
The cause of epidermodysplasia verruciformis is infection by human papillomavirus, usually types 5 or 8, and it exhibits a high potential for malignant transformation. The diagnostic histologic features of epidermodysplasia verruciformis are not always present and can be mimicked by non-viral diseases. The purpose of this study was to interrogate such lesions for new potential biomarkers to aid in the diagnostic accuracy. HPV DNA was high copy and localized to the upper half of the lesion in cells with cytologic features that included perinuclear halos, blue-grey cytoplasm, and hyper/parakeratosis. Serial section analyses demonstrated that there was increased expression of importin-β, exportin-5, Mcl1, p16, Ki67 and PDL1 in 13/13 epidermodysplasia verruciformis lesions. Each of these proteins localized primarily to the less differentiated cells in the parabasal aspect of the lesion. Only Ki67 and exportin-5 were expressed in the normal epithelia, though much less so, in 13/13 aged matched controls. It is concluded that the host response to HPV 5/8 infection in epidermodysplasia verruciformis includes the up regulation of several proteins including p16, Ki67, importin-β, exportin-5, Mcl1, and PDL1. Thus, these proteins may serve as new biomarkers of this disease that can aid in cases that are equivocal for epidermodysplasia verruciformis on histologic examination.
Collapse
Affiliation(s)
- Gerard Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Phylogeny Medical Laboratory, Powell, OH, United States of America.
| | - Alcina Nicol
- National Institute of Infectious Diseases Evandro Chagas-Oswaldo Cruz Foundation (INI/FIOCRUZ), Rio de Janeiro, Brazil
| | - Cecilia Vianna de Andrade
- National Institute of Infectious Diseases Evandro Chagas-Oswaldo Cruz Foundation (INI/FIOCRUZ), Rio de Janeiro, Brazil; Fiocruz National Institute of Women's, Children and Adolescent's Health Fernandes Figueira, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene. Cells 2019; 8:cells8030244. [PMID: 30875834 PMCID: PMC6468676 DOI: 10.3390/cells8030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.
Collapse
|
9
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|