1
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
2
|
López-García E, Romero-Gil V, Arroyo-López FN, Benítez-Cabello A. Impact of lactic acid bacteria inoculation on fungal diversity during Spanish-style green table olive fermentations. Int J Food Microbiol 2024; 417:110689. [PMID: 38621325 DOI: 10.1016/j.ijfoodmicro.2024.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
This study delved into the evolution of fungal population during the fermentation of Spanish-style green table olives (Manzanilla cultivar), determining the influence of different factors such as fermentation matrix (brine or fruit) or the use of a lactic acid bacteria inoculum, on its distribution. The samples (n = 24) were directly obtained from industrial fermentation vessels with approximately 10.000 kg of fruits and 6.000 L of brines. Our findings showcased a synchronized uptick in lactic acid bacteria counts alongside fungi proliferation. Metataxonomic analysis of the Internal Transcribed Spacer (ITS) region unearthed noteworthy disparities across different fermentation time points (0, 24, and 83 days). Statistical analysis pinpointed two Amplicon Sequence Variants (ASV), Candida and Aureobasidium, as accountable for the observed variances among the different fermentation time samples. Notably, Candida exhibited a marked increase during 83 days of fermentation, opposite to Aureobasidium, which demonstrated a decline. Fungal biodiversity was slightly higher in brines than in fruits, whilst no effect of inoculation was noticed. At the onset of fermentation, prominently detected genera were also Mycosphaerella (19.82 %) and Apohysomyces (16.31 %), hitherto unreported in the context of table olive processing. However, their prevalence dwindled to nearly negligible levels from 24th day fermentation onwards (<2 %). On the contrary, they were replaced by the fermentative yeasts Saccharomyces and Isstachenkia. Results obtained in this work will be useful for designing new strategies for better control of table olive fermentations.
Collapse
Affiliation(s)
- Elio López-García
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Verónica Romero-Gil
- Department of Food Science and Technology, Agrifood Campus of International Excellence, University of Cordoba, 14014 Córdoba, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Benítez-Cabello
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
3
|
Traina C, Ferrocino I, Bonciolini A, Cardenia V, Lin X, Rantsiou K, Cocolin L. Monitoring the yeasts ecology and volatiles profile throughout the spontaneous fermentation of Taggiasca cv. table olives through culture-dependent and independent methods. Int J Food Microbiol 2024; 417:110688. [PMID: 38615425 DOI: 10.1016/j.ijfoodmicro.2024.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Taggiasca table olives are typical of Liguria, a Northwestern Italian region, produced with a spontaneous fermentation carried out by placing the raw drupes directly into brine with a salt concentration of 8-12 % w/v. Such concentrations limit the development of unwanted microbes and favor the growth of yeasts. This process usually lasts up to 8 months. Yeasts are found throughout the entire fermentation process and they are mainly involved in the production of volatile organic compounds, which strongly impact the quality of the final product. The aim of this study was to evaluate the dynamics of autochthonous yeasts in brines and olives in a spontaneous process with no lye pre-treatment or addition of acids in the fermenting brine with 10 % NaCl (w/v) in two batches during 2021 harvest. Three hundred seventy-three yeast colonies were isolated, characterized by rep-PCR and identified by the D1/D2 region of the 26S rRNA gene sequencing. Mycobiota was also studied by 26S rRNA gene metataxonomics, while metabolome was assessed through GC-MS analysis. Traditional culture-dependent methods showed the dominance of Candida diddensiae, Wickerhamomyces anomalus, Pichia membranifaciens and Aureobasidium pullulans, with differences in species distribution between batches, sampling time and type of sample (olives/brines). Amplicon-based sequencing confirmed the dominance of W. anomalus in batch 1 throughout the entire fermentation, while Cyteromyces nyonsensis and Aureobasidium spp. were most abundant in the fermentation in batch 2. Volatilome results were analyzed and correlated to the mycobiota data, confirming differences between fermentation stages. Given the high appreciation for this traditional food, this study helps elucidate the mycobiota associated to Taggiasca cv. table olives and its relationship with the quality of the final product.
Collapse
Affiliation(s)
- Chiara Traina
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Xinping Lin
- Biotechnology National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy.
| |
Collapse
|
4
|
Martins F, Rodrigues N, Pereira JA, Baptista P, Ramalhosa E. Effect of the cleaning and disinfection methods on the hygienic conditions of fermentation tanks of table olives (Olea europaea L.) Negrinha de Freixo cultivar. Food Microbiol 2024; 119:104425. [PMID: 38225036 DOI: 10.1016/j.fm.2023.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/08/2023] [Accepted: 11/09/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to evaluate and identify the microbial community attached to the surfaces of fermenter tanks used in table olive Negrinha de Freixo cultivar processing through molecular analysis and verify if the cleaning/disinfection was done correctly. Four fermentation tanks previously used in table olive processing were sampled at three different inside areas: upper, middle, and lower. Before sampling, four cleaning/disinfection methods were applied to the tanks, including (i) pressurised water; (ii) a disinfectant product used to clean bowls (Vasiloxe); (iii) 10% sodium hydroxide solution (caustic soda liquid); and (iv) a disinfectant product used by the wine industry (Hosbit). For each sample collected, mesophilic aerobic bacteria, yeast and moulds (YMC), lactic acid bacteria (LAB), as well as total coliforms (TC) and Pseudomonas aeruginosa were evaluated. The results showed significant differences between the different cleaning/disinfection methods applied. The fermenter sanitised with only pressurised water showed a greater abundance of microorganisms than the others. Mesophilic aerobic bacteria were the predominant population, with counts ranging between 2.63 and 5.56 log10 CFU/100 cm2, followed by the moulds (3.11-5.03 log10 CFU/100 cm2) and yeasts (2.42-5.12 log10 CFU/100 cm2). High diversity of microbial communities was observed between the different fermenter tanks. The most abundant species belonged to Aureobasidium, Bacillaceae, Cladosporium, and Rhodotorula genera. LAB, TC, and P. aeruginosa were not detected. This study hopes to improve hygienic conditions and increase the quality assurance and safety of the final product.
Collapse
Affiliation(s)
- Fátima Martins
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
5
|
Tzamourani AP, Taliadouros V, Paraskevopoulos I, Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Front Microbiol 2023; 14:1301325. [PMID: 38179455 PMCID: PMC10765506 DOI: 10.3389/fmicb.2023.1301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The selection of native yeast for alcoholic fermentation in wine focuses on ensuring the success of the process and promoting the quality of the final product. The purpose of this study was firstly to create a large collection of new yeast isolates and categorize them based on their oenological potential. Additionally, the geographical distribution of the most dominant species, Saccharomyces cerevisiae, was further explored. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of non-desirable metabolites such as acetic acid and H2S, β-glucosidase production and resistance to the antimicrobial agent; SO2. In parallel, S. cerevisiae isolates were typed at strain level by interdelta - PCR genomic fingerprinting. S. cerevisiae strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized grape must. Glucose and fructose consumption was monitored daily and at the final point a free sorting task was conducted to categorize the samples according to their organoleptic profile. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygosaccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. According to phenotypic typing, most isolates were neutral to killer toxin test and exhibited low acetic acid production. Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. Strain level typing reported 20 different S. cerevisiae strains from which 65% indicated fermentative capacity and led to dry wines. Sensory evaluation results clearly discriminated the produced wines and consequently, the proposed yeast categorization was confirmed. A novel approach that employs biostatistical tools for a rapid screening and classification of indigenous wine yeasts with oenological potential, allowing a more efficient preliminary selection or rejection of isolates is proposed.
Collapse
Affiliation(s)
- Aikaterini P. Tzamourani
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Vasileios Taliadouros
- Department of Statistics and Insurance Science, University of Piraeus, Piraeus, Greece
| | - Ioannis Paraskevopoulos
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| |
Collapse
|
6
|
Tsoungos A, Pemaj V, Slavko A, Kapolos J, Papadelli M, Papadimitriou K. The Rising Role of Omics and Meta-Omics in Table Olive Research. Foods 2023; 12:3783. [PMID: 37893676 PMCID: PMC10606081 DOI: 10.3390/foods12203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Table olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.
Collapse
Affiliation(s)
- Anastasios Tsoungos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Violeta Pemaj
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
7
|
Gounari Z, Bonatsou S, Ferrocino I, Cocolin L, Papadopoulou OS, Panagou EZ. Exploring yeast diversity of dry-salted naturally black olives from Greek retail outlets with culture dependent and independent molecular methods. Int J Food Microbiol 2023; 398:110226. [PMID: 37120943 DOI: 10.1016/j.ijfoodmicro.2023.110226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
In the present study, the physicochemical (pH, water activity, moisture content, salt concentration) classical plate counts (total viable counts, yeasts, lactic acid bacteria, Staphylococcus aureus, Pseudomonas spp., Enterobacteriaceae) and amplicon sequencing of naturally black dry-salted olives obtained from different retail outlets of the Greek market were investigated. According to the results, the values of the physicochemical characteristics presented great variability among the samples. Specifically, pH and water activity (aw) values ranged between 4.0 and 5.0, as well as between 0.58 and 0.91, respectively. Moisture content varied between 17.3 and 56.7 % (g Η2Ο/100 g of olive pulp), whereas salt concentration ranged from 5.26 to 9.15 % (g NaCl/100 g of olive pulp). No lactic acid bacteria, S. aureus, Pseudomonas spp. and Enterobacteriaceae were detected. The mycobiota consisted of yeasts that were further characterized and identified by culture-dependent (rep-PCR, ITS-PCR, and RFLP) and amplicon target sequencing (ATS). Pichia membranifaciens, Candida sorbosivorans, Citeromyces nyonsensis, Candida etchelsii, Wickerhamomyces subpelliculosus, Candida apicola, Wickerhamomyces anomalus, Torulaspora delbrueckii and Candida versatilis were the dominant species according to ITS sequencing (culture-dependent), while ATS revealed the dominance of C. etchelsii, Pichia triangularis, P. membranifaciens, and C. versatilis among samples. The results of this study demonstrated considerable variability in quality attributes among the different commercial samples of dry-salted olives, reflecting a lack of standardization in the processing of this commercial style. However, the majority of the samples were characterized by satisfactory microbiological and hygienic quality and complied with the requirements of the trade standard for table olives of the International Olive Council (IOC) for this processing style in terms of salt concentration. In addition, the diversity of yeast species was elucidated for the first time in commercially available products, increasing our knowledge on the microbial ecology of this traditional food. Further investigation into the technological and multifunctional traits of the dominant yeast species may result in better control during dry-salting and enhance the quality and shelf-life of the final product.
Collapse
Affiliation(s)
- Zoe Gounari
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Stamatoula Bonatsou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Ilario Ferrocino
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Olga S Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, Lycovrissi 14123, Attiki, Greece
| | - Efstathios Z Panagou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece.
| |
Collapse
|
8
|
Mougiou N, Tsoureki A, Didos S, Bouzouka I, Michailidou S, Argiriou A. Microbial and Biochemical Profile of Different Types of Greek Table Olives. Foods 2023; 12:foods12071527. [PMID: 37048348 PMCID: PMC10094447 DOI: 10.3390/foods12071527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, Kalamon, Amfissis, and Konservolia, fermented either by Greek style (in brine or salt-drying) or by Spanish style, in order to evaluate their microbial communities. Moreover, analytical methods were used to evaluate their biochemical properties. The prevailing bacterial species of all olives belonged to Lactobacillaceae, Leuconostocaceae, and Erwiniaceae families, while the most abundant yeasts were of the Pichiaceae family. Principal coordinates analysis showed a clustering of samples cured by salt-drying and of samples stored in brine, regardless of their cultivar. The biochemical evaluation of total phenol content, antioxidant activity, hydroxytyrosol, oleuropein, oleocanthal, and oleacein showed that salt-dried olives had low amounts of hydroxytyrosol, while Spanish-style green olives had the highest amounts of oleocanthal. All the other values exhibited various patterns, implying that more than one factor affects the biochemical identity of the final product. The protocols applied in this study can provide useful insights for the final product, both for the producers and the consumers.
Collapse
Affiliation(s)
- Niki Mougiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Spyros Didos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| | - Ioanna Bouzouka
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Medicine, Aristotle University of Thessaloniki, 54154 Thessaloniki, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| |
Collapse
|
9
|
Assessment of Starters of Lactic Acid Bacteria and Killer Yeasts: Selected Strains in Lab-Scale Fermentations of Table Olives (Olea europaea L.) cv. Leccino. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Olives debittering, organoleptic quality and safety can be improved with yeasts and lactic acid bacteria (LABs) selected strain starters, that allow for better fermentation control with respect to natural fermentation. Two selected killer yeasts (Wickerhamomyces anomalus and Saccharomyces cerevisiae) and Lactobacillus plantarum strains were tested for olive (cv. Leccino) fermentation to compare different starter combinations and strategies; the aim was to assess their potential in avoiding pretreatments and the use of excessive salt in the brines and preservatives. Lactobacilli, yeasts, molds, Enterobacteriaceae and total aerobic bacteria were detected, as well as pH, soluble sugars, alcohols, organic acids, phenolic compounds, and rheological properties of olives. Sugars were rapidly consumed in the brines and olives; the pH dropped quickly, then rose until neutrality after six months. The oleuropein final levels in olives were unaffected by the treatments. The use of starters did not improve the LABs’ growth nor prevent the growth of Enterobacteriaceae and molds. The growth of undesirable microorganisms could have been induced by the availability of selective carbon source such as mannitol, whose concentration in olive trees rise under drought stress. The possible role of climate change on the quality and safety of fermented foods should be furtherly investigated. The improvement of olives’ nutraceutical value can be induced by yeasts and LABs starters due to the higher production of hydroxytyrosol.
Collapse
|
10
|
Use of Slightly Pressurized Carbon Dioxide to Enhance the Antimicrobial Properties of Brines in Naturally Processed Black Table Olives. Microorganisms 2022; 10:microorganisms10102049. [PMID: 36296325 PMCID: PMC9611153 DOI: 10.3390/microorganisms10102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Naturally fermented black table olives are processed at low pH in the presence of high sodium chloride concentrations ranging from 8 to 12% (w v−1). Reducing the salt content of brine has become an urgent issue as it is responsible for several health and environmental problems. The study aim was to evaluate slightly pressurized CO2 (spCO2) as a third barrier to microbial growth in naturally processed black table olives with low pH and a reduced NaCl concentration. Based on the assessments performed on a pilot plant scale, an spCO2 of 1 bar completely inhibited the growth of the bacteria and molds in the presence of reduced saline concentrations. Furthermore, the amount of yeast decreased in the brine as a function of the NaCl content. Laboratory tests performed under spCO2 conditions using a single yeast species from the same habitat confirmed the high sensitivity of some oxidizing yeasts and indicated that the fermenting yeast, Saccharomyces cerevisiae, is the most tolerant species. Overall, in the brine of naturally processed olives with a low pH between 4 and 4.2, the antimicrobial properties observed with the high concentrations of NaCl can be achieved with a lower salt dose of 5% (w v−1) when combined with spCO2.
Collapse
|
11
|
Fermentation of cv. Kalamata Natural Black Olives with Potential Multifunctional Yeast Starters. Foods 2022; 11:foods11193106. [PMID: 36230182 PMCID: PMC9563747 DOI: 10.3390/foods11193106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to explore the inoculated fermentation of cv. Kalamata natural black olives using selected strains of yeast cultures with multifunctional potential. For this purpose, five yeast starters belonging to Candida boidinii (four starters) and Saccharomyces cerevisiae (one starter), previously isolated from table olive fermentation of the same variety and screened for their technological characteristics and probiotic potential, were inoculated in brines at the beginning of fermentation. Microbial populations (lactic acid bacteria, yeasts, and Enterobacteriaceae), pH, titratable acidity, organic acids, and ethanol were monitored during fermentation for a period of 5 months. At the same time, the survival of each starter was assessed by culture-dependent molecular identification at the beginning (0 days), middle (75 days), and final stages (150 days) of fermentation in the brines and olives (at the end of the process only). The results revealed the coexistence of yeasts and lactic acid bacteria (LAB) throughout fermentation in most processes and also the absence of Enterobacteriaceae after the first 20 days of brining. The population of yeasts remained 2 log cycles below LAB counts, except for in the inoculated treatment with C. boidinii Y28, where the yeast starter prevailed from day 60 until the end of the fermentation, as well as in the inoculated treatment with C. boidinii Y30, where no LAB could be detected in the brines after 38 days. At the end of the process, LAB ranged between 4.6 and 6.8 log10 CFU/mL, while yeasts were close to 5.0 log10 CFU/mL, except for the inoculated fermentation with C. boidinii Y27 and spontaneous fermentation (control), in which the yeast counts were close to 3.5 log10 CFU/mL. At the end of fermentation, the recovery percentage of C. boidinii Y27 was 50% in the brines and 45% in the olives. C. boidinii Y28 and S. cerevisiae Y34 could be recovered at 25% and 5% in the brine, respectively, whereas neither starter could be detected in the olives. For C. boidinii Y30, the recovery percentage was 25% in the brine and 10% in the olives. Finally, C. boidinii Y31 could not be detected in the brines and survived at a low percentage (10%) in the olives.
Collapse
|
12
|
Benítez-Cabello A, Ramiro-García J, Romero-Gil V, Medina E, Arroyo-López FN. Fungal biodiversity in commercial table olive packages. Food Microbiol 2022; 107:104082. [DOI: 10.1016/j.fm.2022.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
13
|
A Preliminary Approach to Define the Microbiological Profile of Naturally Fermented Peranzana Alta Daunia Table Olives. Foods 2022; 11:foods11142100. [PMID: 35885341 PMCID: PMC9315826 DOI: 10.3390/foods11142100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Samples of brines from Peranzana Alta Daunia olives at the end of fermentation were analyzed; samples were taken in two different years from eight different locations (Torremaggiore, San Severo, San Paolo di Civitate, Lucera, Chieuti, Serracapriola, Gargano and Termoli in Southern Italy). Total aerobic count, enterobacteria, pseudomonads, staphylococci, lactic acid bacteria and yeasts (Saccharomyces and non-Saccharomyces) were assessed; moreover, presumptive lactobacilli were characterized in relation to their ability to grow with salt added, and at 10 and 45 °C. Yeasts were generally more abundant than lactic acid bacteria (LAB), but two clusters were found: one including the areas of Torremaggiore, San Severo, Apricena, Lucera and San Paolo di Civitate (area 1, A1), and another comprising Gargano, Termoli and Serracapriola (area 2, A2). Lactobacilli of A1 were more resistant to stress conditions (growth at 10% of salt and at 10 °C); moreover, A1 was characterized by a lower abundance of yeasts. In some areas (Lucera and San Severo), a higher abundance of non-Saccharomyces yeasts was found. This paper offers a first insight into the profile of Peranzana Alta Daunia olives at the end of fermentation, suggesting that some indices (technological traits of lactobacilli, ratio yeasts vs. LAB, abundance of non-Saccharomyces yeasts) could be useful to define a microbiological profile of the variety.
Collapse
|
14
|
Trials of Commercial- and Wild-Type Saccharomyces cerevisiae Strains under Aerobic and Microaerophilic/Anaerobic Conditions: Ethanol Production and Must Fermentation from Grapes of Santorini (Greece) Native Varieties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In modern wine-making technology, there is an increasing concern in relation to the preservation of the biodiversity, and the employment of “new”, “novel” and wild-type Saccharomyces cerevisiae strains as cell factories amenable for the production of wines that are not “homogenous”, expressing their terroir and presenting interesting and “local” sensory characteristics. Under this approach, in the current study, several wild-type Saccharomyces cerevisiae yeast strains (LMBF Y-10, Y-25, Y-35 and Y-54), priorly isolated from wine and grape origin, selected from the private culture collection of the Agricultural University of Athens, were tested regarding their biochemical behavior on glucose-based (initial concentrations ca 100 and 200 g/L) shake-flask experiments. The wild yeast strains were compared with commercial yeast strains (viz. Symphony, Cross X and Passion Fruit) in the same conditions. All selected strains rapidly assimilated glucose from the medium converting it into ethanol in good rates, despite the imposed aerobic conditions. Concerning the wild strains, the best results were achieved for the strain LMBF Y-54 in which maximum ethanol production (EtOHmax) up to 68 g/L, with simultaneous ethanol yield on sugar consumed = 0.38 g/g were recorded. Other wild strains tested (LMBF Y-10, Y-25 and Y-35) achieved lower ethanol production (up to ≈47 g/L). Regarding the commercial strains, the highest ethanol concentration was achieved by S. cerevisiae Passion Fruit (EtOHmax = 91.1 g/L, yield = 0.45 g/g). Subsequently, the “novel” strain that presented the best technological characteristics regards its sugar consumption and alcohol production properties (viz. LMBF Y-54) and the commercial strain that equally presented the best previously mentioned technological characteristics (viz. Passion Fruit) were further selected for the wine-making process. The selected must originated from red and white grapes (Assyrtiko and Mavrotragano, Santorini Island; Greece) and fermentation was performed under wine-making conditions showing high yields for both strains (EtOHmax = 98–106 g/L, ethanol yield = 0.47–0.50 g/g), demonstrating the production efficiency under microaerophilic/anaerobic conditions. Molecular identification by rep-PCR carried out throughout fermentations verified that each inoculated yeast was the one that dominated during the whole bioprocess. The aromatic compounds of the produced wines were qualitatively analyzed at the end of the processes. The results highlight the optimum technological characteristics of the selected “new” wild strain (S. cerevisiae LMBF Y-54), verifying its suitability for wine production while posing great potential for future industrial applications.
Collapse
|
15
|
Tzamourani AP, Kasimati A, Karagianni E, Manthou E, Panagou EZ. Exploring microbial communities of Spanish-style green table olives of Conservolea and Halkidiki cultivars during modified atmosphere packaging in multi-layered pouches through culture-dependent techniques and metataxonomic analysis. Food Microbiol 2022; 107:104063. [DOI: 10.1016/j.fm.2022.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
|
16
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
17
|
Abstract
The aim of the present study was to assess the transcriptomic response of L. monocytogenes during co-culture with three S. cerevisiae strains. For this purpose, BHI broth was inoculated with 7 log CFU·mL−1 L. monocytogenes serotype 4b strain LQC 15257, isolated from a strawberry sample and 4 log CFU·mL−1 S. cerevisiae strains Y32, Y34 and Y37, isolated from spontaneous olive fermentation. Sampling took place after 24 and 48 h incubation at 5 and 20 °C. RNA was extracted, stabilized and the transcription of virulence associated genes prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ, was assessed by RT-qPCR. Co-culture with the yeast strains mostly affected the transcription of sigB and inlJ, the upregulation of which during growth at 5 °C for 24 h, reached 10.13 and 9.76 log2(fold change), respectively. Similarly, the effect that incubation time had on the relative transcription of the genes under study was dependent on the co-cultivating yeast strain. On the other hand, the effect of the yeast strain was less pronounced when the relative transcription of the genes under study was assessed between 20 °C and 5 °C. In that case, incubation temperature seemed to have an important effect since, in the 79.2% of the samples analyzed, upregulation was evident, irrespective of yeast strain presence. These results highlight the complex trophic relationships that take place during co-existence between L. monocytogenes and S. cerevisiae.
Collapse
|
18
|
Montaño A, Cortés-Delgado A, Sánchez AH, Ruiz-Barba JL. Production of volatile compounds by wild-type yeasts in a natural olive-derived culture medium. Food Microbiol 2021; 98:103788. [PMID: 33875216 DOI: 10.1016/j.fm.2021.103788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The production of volatile compounds in naturally fermented green table olives from Manzanilla cultivar was investigated. A total of 62 volatile compounds were detected after 24 weeks of fermentation. To clarify the contribution of yeasts to the formation of these compounds, such microorganisms were isolated from the corresponding fermenting brines. Five major yeast strains were identified: Nakazawaea molendinolei NC168.1, Zygotorulaspora mrakii NC168.2, Pichia manshurica NC168.3, Candida adriatica NC168.4, and Candida boidinii NC168.5. When these yeasts were grown as pure cultures in an olive-derived culture medium, for 7 days at 25 °C, the number of volatiles produced ranged from 22 (P. manshurica NC168.3) to 60 (C. adriatica NC168.4). Contribution of each yeast strain to the qualitative volatile profile of fermenting brines ranged from 19% (P. manshurica NC168.3) to 48% (Z. mrakii NC168.2 and C. adriatica NC168.4). It was concluded that C. adriatica NC168.4 presented the best aromatic profile, being a solid candidate to be part of a novel starter culture to enhance the organoleptic properties of naturally fermented green table olives.
Collapse
Affiliation(s)
- Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| |
Collapse
|
19
|
Tzamourani AP, Di Napoli E, Paramithiotis S, Economou‐Petrovits G, Panagiotidis S, Panagou EZ. Microbiological and physicochemical characterisation of green table olives of Halkidiki and Conservolea varieties processed by the Spanish method on industrial scale. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aikaterini P. Tzamourani
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| | - Elisa Di Napoli
- Department of Agricultural, Forest and Food Sciences University of Torino Largo Paolo Braccini 2 Grugliasco, Torino10095Italy
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Athens Greece
| | | | - Stavros Panagiotidis
- PELOPAC S.A. Block 38, NB1A Street, Thessaloniki Industrial Area Sindos57022Greece
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| |
Collapse
|
20
|
Tryfinopoulou P, Skarlatos L, Kaplani P, Panagou EZ. Antifungal activity of Saccharomyces cerevisiae and assessment of ochratoxigenic load on currants by means of Real Time PCR. Int J Food Microbiol 2021; 344:109111. [PMID: 33676331 DOI: 10.1016/j.ijfoodmicro.2021.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Currants are prone to contamination by ochratoxin during cultivation, processing and storage conditions. Saccharomyces cerevisiae is considered to be among the main species of grape yeast flora able to control antagonistic fungi. In this study, the potential of S. cerevisiae Y33 was investigated to inhibit the growth of several fungal species indigenous to the microbiota of grapes. Moreover, the efficacy of this yeast species was investigated to inhibit OTA by toxin producing fungi both in vitro and in situ. For this purpose thirty-five different fungal species, belonging to the genera Aspergillus, Penicillium, Cladosporium, Fusarium and Alternaria interacted in vitro with S. cerevisiae on Malt Extract agar plates, stored at 25 °C for 14 days. Results showed that the highest OTA producer A. carbonarius F71 was inhibited more than 99% from day 7, in contrast to A. niger strains that presented enhanced OTA production at day 14 due to interaction with S. cerevisiae Y33. Additionally, the antifungal potential of the selected yeast was also studied in situ on currants subjected to different treatments and stored at 25 °C for 28 days. Microbiological analysis was undertaken for the enumeration of the bacterial and fungal flora, together with OTA determination at 7 and 21 days. To quantify A. carbonarius on all treated currant samples, molecular analysis with Real Time PCR was employed. A standard curve was prepared with A. carbonarius DNA. The efficiency of the curve was estimated to 10.416, the slope to -3.312 and the range of haploid genome that could be estimated was from 1.05 to 105∙105. The amount of A. carbonarius DNA in all treated currants samples, where the fungus was positively detected, ranged from as low as 0.08 to 562 ng DNA/g currants. The antifungal activity of S. cerevisiae Y33 was observed in all studied cases, causing inhibition of fungal growth and OTA production.
Collapse
Affiliation(s)
- Paschalitsa Tryfinopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Leonidas Skarlatos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Paraskevi Kaplani
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Greece.
| |
Collapse
|
21
|
Argyri K, Doulgeraki AI, Manthou E, Grounta A, Argyri AA, Nychas GJE, Tassou CC. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020; 8:microorganisms8081241. [PMID: 32824085 PMCID: PMC7464643 DOI: 10.3390/microorganisms8081241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Current information from conventional microbiological methods on the microbial diversity of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive analysis of their microbial community, providing microbial identity of table olive varieties and their designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity of fermented olives of two main Greek varieties collected from different regions-green olives, cv. Halkidiki, from Kavala and Halkidiki and black olives, cv. Konservolia, from Magnesia and Fthiotida-via conventional microbiological methods and NGS. Total viable counts (TVC), lactic acid bacteria (LAB), yeast and molds, and Enterobacteriaceae were enumerated. Microbial genomic DNA was directly extracted from the olives' surface and subjected to NGS for the identification of bacteria and yeast communities. Lactobacillaceae was the most abundant family in all samples. In relation to yeast diversity, Phaffomycetaceae was the most abundant yeast family in Konservolia olives from the Magnesia region, while Pichiaceae dominated the yeast microbiota in Konservolia olives from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing multivariate analysis allowed for the first time the discrimination of cv. Konservolia and cv. Halkidiki table olives according to their geographical origin.
Collapse
Affiliation(s)
- Konstantina Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| | - Evanthia Manthou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - George-John E. Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| |
Collapse
|
22
|
FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiol 2020; 92:103606. [PMID: 32950142 DOI: 10.1016/j.fm.2020.103606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
Table olives are considered the most widespread fermented food in the Mediterranean area and their consumption is expanding all over the world. This fermented vegetable can be considered as a natural functional food thanks to their high nutritional value and high content of bioactive compounds that contribute to the health and well-being of consumers. The presence of bioactive compounds is strongly influenced by a complex microbial consortium, traditionally exploited through culture-dependent approaches. Recently, the rapid spread of omics technologies has represented an important challenge to better understand the function, the adaptation and the exploitation of microbial diversity in different complex ecosystems, such as table olives. This review provides an overview of the potentiality of omics technologies to in depth investigate the microbial composition and the metabolic processes that drive the table olives fermentation, affecting both sensorial profile and safety properties of the final product. Finally, the review points out the role of omics approaches to raise at higher sophisticated level the investigations on microbial, gene, protein, and metabolite, with huge potential for the integration of table olives composition with functional assessments.
Collapse
|
23
|
Anagnostopoulos DA, Kamilari E, Tsaltas D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front Microbiol 2020; 11:1128. [PMID: 32547528 PMCID: PMC7273852 DOI: 10.3389/fmicb.2020.01128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Table olives are one of the most well-known traditionally fermented products, and their global consumption is exponentially increasing. In direct brining, table olives are produced spontaneously, without any debittering pre-treatment. Up to date, fermentation process remains empirical and inconstant, as it is affected by the physicochemical attributes of the fruit, tree and fruit management of pro and post-harvest. In the present study, whole and cracked Picual table olives were fermented at industrial scale for 120 days, using three distinct methods (natural fermentation, inoculation with lactic acid bacteria (LAB) at a 7 or a 10% NaCl concentration). Microbial, physicochemical and sensorial alterations monitored during the whole process, and several differences were observed between treatments. Results indicated that in all treatments, the dominant microflora were LAB. Yeasts also detected in noteworthy populations, especially in non-inoculated samples. However, LAB population was significantly higher in inoculated compared to non-inoculated samples. Microbial profiles identified by metagenomic approach showed meaningful differences between spontaneous and inoculated treatments. As a result, the profound dominance of starter culture had a severe effect on olives fermentation, resulting in lower pH and higher acidification, which was mainly caused by the higher levels of lactic acid produced. Furthermore, the elimination of Enterobacteriaceae was shortened, even at lower salt concentration. Although no effect observed concerning the quantitated organoleptic parameters such as color and texture, significantly higher levels in terms of antioxidant capacity were recorded in inoculated samples. At the same time, the degradation time of oleuropein was shortened, leading to the production of higher levels of hydroxytyrosol. Based on this evidence, the establishment of starter culture driven Picual olives fermentation is strongly recommended. It is crucial to mention that the inoculated treatment with reducing sodium content was highly appreciated by the sensory panel, enhancing the hypothesis that the production of Picual table olives at reduced NaCl levels is achievable.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
24
|
Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms 2020; 8:microorganisms8050672. [PMID: 32384669 PMCID: PMC7284738 DOI: 10.3390/microorganisms8050672] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
Kalamata natural black olives are one of the most economically important Greek varieties. The microbial ecology of table olives is highly influenced by the co-existence of bacteria and yeasts/fungi, as well as the physicochemical parameters throughout the fermentation. Therefore, the aim of this study was the identification of bacterial and yeast/fungal microbiota of both olives and brines obtained from 29 cv. Kalamata olive samples industrially fermented in the two main producing geographical regions of Greece, namely Aitoloakarnania and Messinia/Lakonia. The potential microbial biogeography association between certain taxa and geographical area was also assessed. The dominant bacterial family identified in olive and brine samples from both regions was Lactobacillaceae, presenting, however, higher average abundances in the samples from Aitoloakarnania compared to Messinia/Lakonia. At the genus level, Lactobacillus, Celerinatantimonas, Propionibacterium and Pseudomonas were the most abundant. In addition, the yeasts/fungal communities were less diverse compared to those of bacteria, with Pichiaceae being the dominant family and Pichia, Ogataea, and Saccharomyces being the most abundant genera. To the best of our knowledge, this is the first report on the microbiota of both olives and brines of cv. Kalamata black olives fermented on an industrial scale between two geographical regions of Greece using metagenomics analysis.
Collapse
|
25
|
Medina E, García‐García P, Romero C, Castro A, Brenes M. Aerobic industrial processing of Empeltre cv. natural black olives and product characterisation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Medina
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Pedro García‐García
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Concepción Romero
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Antonio Castro
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Manuel Brenes
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| |
Collapse
|
26
|
Anagnostopoulos DA, Goulas V, Xenofontos E, Vouras C, Nikoloudakis N, Tsaltas D. Benefits of the Use of Lactic Acid Bacteria Starter in Green Cracked Cypriot Table Olives Fermentation. Foods 2019; 9:foods9010017. [PMID: 31878011 PMCID: PMC7023104 DOI: 10.3390/foods9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023] Open
Abstract
Table olives are one of the most established Mediterranean vegetables, having an exponential increase consumption year by year. In the natural-style processing, olives are produced by spontaneous fermentation, without any chemical debittering. This natural fermentation process remains empirical and variable since it is strongly influenced by physicochemical parameters and microorganism presence in olive drupes. In the present work, Cypriot green cracked table olives were processed directly in brine (natural olives), using three distinct methods: spontaneous fermentation, inoculation with lactic acid bacteria at a 7% or a 10% NaCl concentration. Sensory, physicochemical, and microbiological alterations were monitored at intervals, and major differences were detected across treatments. Results indicated that the predominant microorganisms in the inoculated treatments were lactic acid bacteria, while yeasts predominated in control. As a consequence, starter culture contributed to a crucial effect on olives fermentation, leading to faster acidification and lower pH. This was attributed to a successful lactic acid fermentation, contrasting the acetic and alcoholic fermentation observed in control. Furthermore, it was established that inhibition of enterobacteria growth was achieved in a shorter period and at a significantly lower salt concentration, compared to the spontaneous fermentation. Even though no significant variances were detected in terms of the total phenolic content and antioxidant capacity, the degradation of oleuropein was achieved faster in inoculated treatments, thus, producing higher levels of hydroxytyrosol. Notably, the reduction of salt concentration, in combination with the use of starter, accented novel organoleptic characteristics in the final product, as confirmed from a sensory panel; hence, it becomes obvious that the production of Cypriot table olives at reduced NaCl levels is feasible.
Collapse
|
27
|
Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol 2019; 84:103250. [DOI: 10.1016/j.fm.2019.103250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 11/24/2022]
|
28
|
Pontes A, Čadež N, Gonçalves P, Sampaio JP. A Quasi-Domesticate Relic Hybrid Population of Saccharomyces cerevisiae × S. paradoxus Adapted to Olive Brine. Front Genet 2019; 10:449. [PMID: 31191600 PMCID: PMC6548830 DOI: 10.3389/fgene.2019.00449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
The adaptation of the yeast Saccharomyces cerevisiae to man-made environments for the fermentation of foodstuffs and beverages illustrates the scientific, social, and economic relevance of microbe domestication. Here we address a yet unexplored aspect of S. cerevisiae domestication, that of the emergence of lineages harboring some domestication signatures but that do not fit completely in the archetype of a domesticated yeast, by studying S. cerevisiae strains associated with processed olives, namely table olives, olive brine, olive oil, and alpechin. We confirmed earlier observations that reported that the Olives population results from a hybridization between S. cerevisiae and S. paradoxus. We concluded that the olive hybrids form a monophyletic lineage and that the S. cerevisiae progenitor belonged to the wine population of this species. We propose that homoploid hybridization gave rise to a diploid hybrid genome, which subsequently underwent the loss of most of the S. paradoxus sub-genome. Such a massive loss of heterozygosity was probably driven by adaptation to the new niche. We observed that olive strains are more fit to grow and survive in olive brine than control S. cerevisiae wine strains and that they appear to be adapted to cope with the presence of NaCl in olive brine through expansion of copy number of ENA genes. We also investigated whether the S. paradoxus HXT alleles retained by the Olives population were likely to contribute to the observed superior ability of these strains to consume sugars in brine. Our experiments indicate that sugar consumption profiles in the presence of NaCl are different between members of the Olives and Wine populations and only when cells are cultivated in nutritional conditions that support adaptation of their proteome to the high salt environment, which suggests that the observed differences are due to a better overall fitness of olives strains in the presence of high NaCl concentrations. Although relic olive hybrids exhibit several characteristics of a domesticated lineage, tangible benefits to humans cannot be associated with their phenotypes. These strains can be seen as a case of adaptation without positive or negative consequences to humans, that we define as a quasi-domestication.
Collapse
Affiliation(s)
- Ana Pontes
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
29
|
Bonatsou S, Karamouza M, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Papadimitriou K, Tsakalidou E, Nychas GJE, Panagou EΖ. Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int J Food Microbiol 2018; 271:48-59. [DOI: 10.1016/j.ijfoodmicro.2018.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
|