1
|
Boucard AS, Kulakauskas S, Alazzaz J, Chaouch S, Mammeri M, Millan-Oropeza A, Machado C, Henry C, Péchoux C, Richly H, Gassel M, Langella P, Polack B, Florent I, Bermúdez-Humarán LG. Isolation of derivatives from the food-grade probiotic Lactobacillus johnsonii CNCM I-4884 with enhanced anti- Giardia activity. Gut Microbes 2025; 17:2474149. [PMID: 40145272 PMCID: PMC11951713 DOI: 10.1080/19490976.2025.2474149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Giardiasis, a widespread intestinal parasitosis affecting humans and animals, is a growing concern due to the emergence of drug-resistant strains of G. intestinalis. Probiotics offer a promising alternative for preventing and treating giardiasis. Recent studies have shown that the probiotic Lactobacillus johnsonii CNCM I-4884 inhibits G. intestinalis growth both in vitro and in vivo. This protective effect is largely mediated by bile salt hydrolase (BSH) enzymes, which convert conjugated bile acids (BAs) into free forms that are toxic to the parasite. The objective of this study was to use adaptive evolution to develop stress-resistant derivatives of L. johnsonii CNCM I-4884, with the aim of improving its anti-Giardia activity. Twelve derivatives with enhanced resistance to BAs and reduced autolysis were generated. Among them, derivative M11 exhibited the highest in vitro anti-Giardia effect with enhanced BSH activity. Genomic and proteomic analyses of M11 revealed two SNPs and the upregulation of the global stress response by SigB, which likely contributed to its increased BAs resistance and BSH overproduction. Finally, the anti-Giardia efficacy of M11 was validated in a murine model of giardiasis. In conclusion, our results demonstrate that adaptive evolution is an effective strategy to generate robust food-grade bacteria with improved health benefits.
Collapse
Affiliation(s)
- Anne-Sophie Boucard
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jana Alazzaz
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Soraya Chaouch
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Mohamed Mammeri
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aaron Millan-Oropeza
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Carine Machado
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Holger Richly
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Michael Gassel
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Philippe Langella
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Bruno Polack
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Isabelle Florent
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Luis G. Bermúdez-Humarán
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
Sun M, Li Q, Zhang F, Yao D, Huang W, Lv Q, Jiang H, Kong D, Ren Y, Chen S, Jiang Y, Liu P. The Genomic Characteristics of Potential Probiotics: Two Streptococcus salivarius Isolates from a Healthy Individual in China. Microorganisms 2025; 13:694. [PMID: 40142586 PMCID: PMC11945364 DOI: 10.3390/microorganisms13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The isolation and characterization of novel probiotics from dairy products, fermented foods, and the gut have gained significant attention. In particular, Streptococcus salivarius shows promise for use in oral probiotic preparations. In this study, we isolated two strains of S. salivarius-S.82.15 and S.82.20-from the oral cavity of a healthy individual. These strains exhibited distinct antimicrobial profiles. We thoroughly assessed the morphology and growth patterns of both strains and confirmed auto-aggregation and hemolytic activity. Through comprehensive genomic analysis, we found notable strain differences within the same bacterial species isolated from the same individual. Notably, the presence or absence of plasmids varied between the two strains. The genome of S.82.15 spans 2,175,688 bps and contains 1994 coding DNA sequences (CDSs), while S.82.20 has a genome size of 2,414,610 bps, a GC content of 40.62%, and 2276 annotated CDSs. Both strains demonstrated antibacterial activity against Group A Streptococcus (GAS), Micrococcus. luteus, and Porphyromonas gingivalis. To investigate the antibacterial properties further, we identified a gene cluster of salivaricin 9 on the plasmid of S.82.20 and a blp gene family on the chromosomes of both S.82.15 and S.82.20. Moreover, the gene expression of the blp family was upregulated when the isolated strains were co-cultured with GAS.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Feiran Zhang
- Division of Fifth, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ding Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Peng Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| |
Collapse
|
3
|
Díaz-Formoso L, Contente D, Feito J, Hernández PE, Borrero J, Muñoz-Atienza E, Cintas LM. Genomic Sequence of Streptococcus salivarius MDI13 and Latilactobacillus sakei MEI5: Two Promising Probiotic Strains Isolated from European Hakes ( Merluccius merluccius, L.). Vet Sci 2024; 11:365. [PMID: 39195819 PMCID: PMC11359882 DOI: 10.3390/vetsci11080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Frequently, diseases in aquaculture have been fought indiscriminately with the use of antibiotics, which has led to the development and dissemination of (multiple) antibiotic resistances in bacteria. Consequently, it is necessary to look for alternative and complementary approaches to chemotheraphy that are safe for humans, animals, and the environment, such as the use of probiotics in fish farming. The objective of this work was the Whole-Genome Sequencing (WGS) and bioinformatic and functional analyses of S. salivarius MDI13 and L. sakei MEI5, two LAB strains isolated from the gut of commercial European hakes (M. merluccius, L.) caught in the Northeast Atlantic Ocean. The WGS and bioinformatic and functional analyses confirmed the lack of transferable antibiotic resistance genes, the lack of virulence and pathogenicity issues, and their potentially probiotic characteristics. Specifically, genes involved in adhesion and aggregation, vitamin biosynthesis, and amino acid metabolism were detected in both strains. In addition, genes related to lactic acid production, active metabolism, and/or adaptation to stress and adverse conditions in the host gastrointestinal tract were detected in L. sakei MEI5. Moreover, a gene cluster encoding three bacteriocins (SlvV, BlpK, and BlpE) was identified in the genome of S. salivarius MDI13. The in vitro-synthesized bacteriocin BlpK showed antimicrobial activity against the ichthyopathogens Lc. garvieae and S. parauberis. Altogether, our results suggest that S. salivarius MDI13 and L. sakei MEI5 have a strong potential as probiotics to prevent fish diseases in aquaculture as an appropriate alternative/complementary strategy to the use of antibiotics.
Collapse
Affiliation(s)
| | | | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | | | | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | |
Collapse
|
4
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
5
|
Kulig K, Kowalik K, Surowiec M, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Isolation and Characteristics of Extracellular Vesicles Produced by Probiotics: Yeast Saccharomyces boulardii CNCM I-745 and Bacterium Streptococcus salivarius K12. Probiotics Antimicrob Proteins 2024; 16:936-948. [PMID: 37209320 PMCID: PMC11126510 DOI: 10.1007/s12602-023-10085-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Numerous probiotic microorganisms have repeatedly been shown to produce nanometer-sized structures named extracellular vesicles (EVs). Recently, it has been suggested that similarly to whole microbial cells, EVs produced by probiotics may also demonstrate health benefits to the host, while their application does not involve the risk of infection caused by live microorganisms. In this work, we isolated EVs from two probiotic species originating from different taxonomic domains - yeast Saccharomyces boulardii CNCM I-745 and bacterium Streptococcus salivarius K12. The diameters of S. boulardii EVs were about 142 nm and for S. salivarius EVs about 123 nm. For S. boulardii EVs, 1641 proteins and for S. salivarius EVs, 466 proteins were identified with a liquid chromatography-coupled tandem mass spectrometry and then functionally classified. In both microbial species, metabolic proteins significantly contributed to the cargo of EVs comprising 25% and 26% of all identified vesicular proteins for fungi and bacteria, respectively. Moreover, enzymes associated with cell wall rearrangement, including enzymatically active glucanases, were also identified in EVs. Furthermore, probiotic EVs were shown to influence host cells and stimulate the production of IL-1β and IL-8 by the human monocytic cell line THP-1, and, at the same time, did not cause any remarkable reduction in the survival rate of Galleria mellonella larvae in this invertebrate model commonly used to evaluate microbial EV toxicity. These observations suggest that the EVs produced by the investigated probiotic microorganisms may be promising structures for future use in pro-health applications.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
6
|
Xu R, McLoughlin G, Nicol M, Geddes D, Stinson L. Residents or Tourists: Is the Lactating Mammary Gland Colonized by Residential Microbiota? Microorganisms 2024; 12:1009. [PMID: 38792838 PMCID: PMC11123721 DOI: 10.3390/microorganisms12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The existence of the human milk microbiome has been widely recognized for almost two decades, with many studies examining its composition and relationship to maternal and infant health. However, the richness and viability of the human milk microbiota is surprisingly low. Given that the lactating mammary gland houses a warm and nutrient-rich environment and is in contact with the external environment, it may be expected that the lactating mammary gland would contain a high biomass microbiome. This discrepancy raises the question of whether the bacteria in milk come from true microbial colonization in the mammary gland ("residents") or are merely the result of constant influx from other bacterial sources ("tourists"). By drawing together data from animal, in vitro, and human studies, this review will examine the question of whether the lactating mammary gland is colonized by a residential microbiome.
Collapse
Affiliation(s)
- Ruomei Xu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Grace McLoughlin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Mark Nicol
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Lisa Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| |
Collapse
|
7
|
Ye J, Liang W, Wu L, Guo R, Wu W, Yang D, Chen L. Antimicrobial effect of Streptococcus salivarius outer membrane-coated nanocomplexes against Candida albicans and oral candidiasis. MATERIALS & DESIGN 2023; 233:112177. [DOI: 10.1016/j.matdes.2023.112177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Li W, Liang H, Lin X, Hu T, Wu Z, He W, Wang M, Zhang J, Jie Z, Jin X, Xu X, Wang J, Yang H, Zhang W, Kristiansen K, Xiao L, Zou Y. A catalog of bacterial reference genomes from cultivated human oral bacteria. NPJ Biofilms Microbiomes 2023; 9:45. [PMID: 37400465 DOI: 10.1038/s41522-023-00414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The oral cavity harbors highly diverse communities of microorganisms. However, the number of isolated species and high-quality genomes is limited. Here we present a Cultivated Oral Bacteria Genome Reference (COGR), comprising 1089 high-quality genomes based on large-scale aerobic and anaerobic cultivation of human oral bacteria isolated from dental plaques, tongue, and saliva. COGR covers five phyla and contains 195 species-level clusters of which 95 include 315 genomes representing species with no taxonomic annotation. The oral microbiota differs markedly between individuals, with 111 clusters being person-specific. Genes encoding CAZymes are abundant in the genomes of COGR. Members of the Streptococcus genus make up the largest proportion of COGR and many of these harbor entire pathways for quorum sensing important for biofilm formation. Several clusters containing unknown bacteria are enriched in individuals with rheumatoid arthritis, emphasizing the importance of culture-based isolation for characterizing and exploiting oral bacteria.
Collapse
Affiliation(s)
- Wenxi Li
- BGI-Shenzhen, 518083, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | | | - Xiaoqian Lin
- BGI-Shenzhen, 518083, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | | | - Zhinan Wu
- BGI-Shenzhen, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenxin He
- BGI-Shenzhen, 518083, Shenzhen, China
| | | | | | - Zhuye Jie
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, 518120, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, 518083, Shenzhen, China
- James D. Watson Institute of Genome Sciences, 310058, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, 518083, Shenzhen, China
- James D. Watson Institute of Genome Sciences, 310058, Hangzhou, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- PREDICT, Center for Molecular Prediction of Inflammatory Bowel Disease, Faculty of Medicine, Aalborg University, 2450, Copenhagen, Denmark.
| | - Liang Xiao
- BGI-Shenzhen, 518083, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, 518083, Shenzhen, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
9
|
Aswal M, Singhal N, Kumar M. Comprehensive genomic analysis of hypocholesterolemic probiotic Enterococcus faecium LR13 reveals unique proteins involved in cholesterol-assimilation. Front Nutr 2023; 10:1082566. [PMID: 37081914 PMCID: PMC10110904 DOI: 10.3389/fnut.2023.1082566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases (CVDs). Chemotherapeutic agents for CVDs exhibit several side effects. Specific probiotics with hypocholesterolemic effects can be safe and effective alternatives to chemotherapeutics. Here, we have analyzed and compared the genome of a novel rhizospheric Enterococcus faecium LR13 cholesterol-assimilating probiotic with other probiotic/pathogenic E. faecium strains to discern genetic factors underlying probiotic efficacy and cholesterol-assimilation. Genomic analyses of E. faecium probiotic strains revealed that LR13 and WEFA23 (cholesterol-assimilating probiotics) harbored 21 unique proteins absent in non-cholesterol-assimilating probiotics. Of these, 14 proteins could directly help in cholesterol-assimilation by producing short chain fatty acids, lipid (sterol) transport and membrane stabilization, and bile salt hydrolase activity. This suggests that cholesterol-assimilation is an intrinsic, strain-specific trait exhibited by probiotics with a specific genetic constitution. Moreover, the unique proteins identified in this study can serve as biomarkers for discerning/characterizing cholesterol-assimilating probiotics as novel biotherapeutics against CVDs.
Collapse
|
10
|
Vertillo Aluisio G, Spitale A, Bonifacio L, Privitera GF, Stivala A, Stefani S, Santagati M. Streptococcus salivarius 24SMBc Genome Analysis Reveals New Biosynthetic Gene Clusters Involved in Antimicrobial Effects on Streptococcus pneumoniae and Streptococcus pyogenes. Microorganisms 2022; 10:2042. [PMID: 36296318 PMCID: PMC9610097 DOI: 10.3390/microorganisms10102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Streptococcus salivarius 24SMBc is an oral probiotic with antimicrobial activity against the otopathogens Streptococcus pyogenes and Streptococcus pneumoniae. Clinical studies have reinforced its role in reducing the recurrence of upper respiratory tract infections (URTIs) and rebalancing the nasal microbiota. In this study, for the first time, we characterized 24SMBc by whole genome sequencing and annotation; likewise, its antagonistic activity vs. Streptococcus pneumoniae and Streptococcus pyogenes was evaluated by in vitro co-aggregation and competitive adherence tests. The genome of 24SMBc comprises 2,131,204 bps with 1933 coding sequences (CDS), 44 tRNA, and six rRNA genes and it is categorized in 319 metabolic subsystems. Genome mining by BAGEL and antiSMASH tools predicted three novel biosynthetic gene clusters (BGCs): (i) a Blp class-IIc bacteriocin biosynthetic cluster, identifying two bacteriocins blpU and blpK; (ii) an ABC-type bacteriocin transporter; and (iii) a Type 3PKS (Polyketide synthase) involved in the mevalonate pathway for the isoprenoid biosynthetic process. Further analyses detected two additional genes for class-IIb bacteriocins and 24 putative adhesins and aggregation factors. Finally, in vitro assays of 24SMBc showed significant anti-adhesion and co-aggregation effects against Streptococcus pneumoniae strains, whereas it did not act as strongly against Streptococcus pyogenes. In conclusion, we identified a novel blpU-K bacteriocin-encoding BGC and two class-IIb bacteriocins involved in the activity against Streptococcus pneumoniae and Streptococcus pyogenes; likewise the type 3PKS pathway could have beneficial effects for the host including antimicrobial activity. Furthermore, the presence of adhesins and aggregation factors might be involved in the marked in vitro activity of co-aggregation with pathogens and competitive adherence, showing an additional antibacterial activity not solely related to metabolite production. These findings corroborate the antimicrobial activity of 24SMBc, especially against Streptococcus pneumoniae belonging to different serotypes, and further consolidate the use of this strain in URTIs in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Santagati
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
He Z, Jiang W, Jiang Y, Dong J, Song Z, Xu J, Zhou W. Anti-biofilm activities of coumarin as quorum sensing inhibitor for Porphyromonas gingivalis. J Oral Microbiol 2022; 14:2055523. [PMID: 35368854 PMCID: PMC8967191 DOI: 10.1080/20002297.2022.2055523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis, a biofilm-mediated infection disease. This research aimed to investigate the effect of coumarin on P. gingivalis biofilm formation. We detected the antimicrobial effect on P. gingivalis planktonic growth, observed membrane structure and morphological change by TEM, and quantified membrane permeability by calcein-AM staining. The cell surface hydrophobicity, aggregation, and attachment were assessed. We also investigated different sub-MIC concentrations of coumarin on biofilm formation, and observed biofilm structureby confocal laser scanning microscopy. The biofilm-related gene expression was evaluated using real-time PCR. The results showed that coumarin inhibited P. gingivalis growth and damaged the cell morphology above 400 μM concentration. Coumarin did not affect cell surface hydrophobicity, aggregation, attachment, and the early stage of biofilm formation at sub-MIC concentrations. Still, it exhibited anti-biofilm effects for the late-stage and pre-formed biofilms dispersion. The biofilms after coumarin treatment became interspersed, and biofilm-related gene expression was downregulated. Coumarin also inhibited AI-2 activity and interacted with the HmuY protein by molecular docking analysis. Our research demonstrated that coumarin inhibited P. gingivalis biofilm formation through a quorum sensing system.
Collapse
Affiliation(s)
- Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Jiang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiachen Dong
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine ; Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Qi C, Zhou J, Tu H, Tu R, Chang H, Chen J, Li D, Sun J, Yu R. Lactation-dependent vertical transmission of natural probiotics from the mother to the infant gut through breast milk. Food Funct 2021; 13:304-315. [PMID: 34889924 DOI: 10.1039/d1fo03131g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transmission of certain bacteria from the mother's gut to the infant's gut via breast milk (BM) is critical for the offspring's immune system development. Dysbiosis of the BM microbiota can be caused by a variety of reasons, which can be influenced by probiotics delivered via the enteromammary route. The goal of this study was to investigate the bacteria that can be transmitted from the mother to the infant's intestine during various lactation periods in 19 mother-child dyads. Bacterial transmission is most common during the colostrum phase when bacteria with certain amplicon sequence variants (ASVs) enter the newborn intestine and inhabit it permanently. We have established that anaerobic gut-associated bacteria, such as Faecalibacterium, Blautia and Lachnoclostridium, transfer from the mother to the infant's gut with lactation dependence using the idea of weighted transfer ratios. Streptococcus salivarius, Bifidobacterium longum, and Lactobacillus gasseri are transferred from the maternal gut to the BM, as well as from the BM to the newborn gut, depending on different ASVs. These findings suggest that isolation of key microorganisms from breast milk could be utilized to modify the microbiota of BM or newborns by giving the mother a probiotic or adding it to artificial milk to promote neonatal health.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Rundan Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Hong Chang
- Department of Pediatric Cardiology, Nephrology and Rheumatism, The Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, PR China
| | - Jie Chen
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China. E-mail:.
| |
Collapse
|
13
|
Deacidification of Cranberry Juice Reduces Its Antibacterial Properties against Oral Streptococci but Preserves Barrier Function and Attenuates the Inflammatory Response of Oral Epithelial Cells. Foods 2021; 10:foods10071634. [PMID: 34359504 PMCID: PMC8305880 DOI: 10.3390/foods10071634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cranberry (Vaccinium macrocarpon) may be a potent natural adjuvant for the prevention of oral diseases due to its anti-adherence, anti-cariogenic, and anti-inflammatory properties. However, the high titrable acidity of cranberry juice (CJ) has been reported to cause gastrointestinal discomfort, leading consumers to restrict their intake of this beverage. Electrodialysis with a bipolar membrane (EDBM) can reduce the organic acid content of CJ while retaining the flavonoids associated with potential health benefits. This study aimed to assess how the deacidification of CJ by EDBM impacts the antibacterial properties of the beverage against cariogenic (Streptococcus mutans, Streptococcus sobrinus) and commensal (Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius) streptococci, and how it affects oral epithelial barrier function and inflammatory response in an in vitro model. The removal of organic acids from CJ (deacidification rate ≥42%) reduced the bactericidal activity of the beverage against planktonic S. mutans and S. gordonii after a 15-min exposure, whereas only the viability of S. gordonii was significantly impacted by CJ deacidification rate when the bacteria were embedded in a biofilm. Moreover, conditioning saliva-coated hydroxyapatite with undiluted CJ samples significantly lowered the adherence of S. mutans, S. sobrinus, and S. oralis. With respect to epithelial barrier function, exposure to CJ deacidified at a rate of ≥19% maintained the integrity of a keratinocyte monolayer over the course of 24 h compared to raw CJ, as assessed by the determination of transepithelial electrical resistance (TER) and fluorescein isothiocyanate-conjugated dextran paracellular transport. These results can be in part attributed to the inability of the deacidified CJ to disrupt two tight junction proteins, zonula occludens-1 and occludin, following exposure, unlike raw CJ. Deacidification of CJ impacted the secretion of IL-6, but not of IL-8, by oral epithelial cells. In conclusion, deacidification of CJ appears to provide benefits with respect to the maintenance of oral health.
Collapse
|
14
|
Nwoko ESQA, Okeke IN. Bacteria autoaggregation: how and why bacteria stick together. Biochem Soc Trans 2021; 49:1147-1157. [PMID: 34110370 PMCID: PMC8286834 DOI: 10.1042/bst20200718] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Autoaggregation, adherence between identical bacterial cells, is important for colonization, kin and kind recognition, and survival of bacteria. It is directly mediated by specific interactions between proteins or organelles on the surfaces of interacting cells or indirectly by the presence of secreted macromolecules such as eDNA and exopolysaccharides. Some autoaggregation effectors are self-associating and present interesting paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at specific times and niches. It is, therefore, typically regulated through transcriptional or post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation can contribute to bacterial adherence, biofilm formation or other higher-level functions. However, autoaggregation is only required for these phenotypes in some bacteria. Thus, autoaggregation should be detected, studied and measured independently using both qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggregation holds the potential for the discovery of new therapeutic targets that could be cost-effectively exploited.
Collapse
Affiliation(s)
- El-shama Q. A. Nwoko
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
15
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, Calla-Poma R. Identification of Proteins Associated with the Formation of Oral Biofilms. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Wang Y, Samaranayake LP, Dykes GA. Tea extracts modulate oral biofilm development by altering bacterial hydrophobicity and aggregation. Arch Oral Biol 2020; 122:105032. [PMID: 33418435 DOI: 10.1016/j.archoralbio.2020.105032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of tea extracts on biofilm formation by oral streptococci and the potential mechanisms behind the effects. DESIGN We examined the effects of five types of tea extracts (green, oolong, black, pu-erh and chrysanthemum tea) on cell surface hydrophobicity and auto-aggregation of three different streptococcal species (Streptococcus mutans, Streptococcus salivarius and Streptococcus mitis) and evaluated their biofilm formation on four disparate hard surfaces (glass, stainless steel, hydroxyapatite and titanium). The correlation between biofilm formation and the cellular properties were investigated in order to study the mechanisms by which the tea extracts affect biofilm formation. RESULTS Results show that the tea extracts reduced cell surface hydrophobicity (by up to 57.9 %) and, in some cases, altered cellular auto-aggregation (by up to 12 %) and biofilm formation (by up to 2.61 log CFU cm-2). Specifically, oolong tea extract was found to enhance biofilm formation by increasing cellular auto-aggregation and pu-erh tea extract retarded biofilm formation by increasing auto-aggregation. Biofilm formation correlated well to cell surface hydrophobicity and auto-aggregation in combination, but not to either one alone as determined by multiple linear regression analysis. CONCLUSIONS Tea extracts have the ability to modulate streptococcal biofilm formation by altering cell surface hydrophobicity and cellular aggregation.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, Brisbane, Queensland 4006, Australia.
| | | | - Gary A Dykes
- Graduate Research School, Curtin University, Perth, Western Australia 6845, Australia.
| |
Collapse
|
18
|
Quilodrán-Vega S, Albarracin L, Mansilla F, Arce L, Zhou B, Islam MA, Tomokiyo M, Al Kassaa I, Suda Y, Kitazawa H, Villena J. Functional and Genomic Characterization of Ligilactobacillus salivarius TUCO-L2 Isolated From Lama glama Milk: A Promising Immunobiotic Strain to Combat Infections. Front Microbiol 2020; 11:608752. [PMID: 33363529 PMCID: PMC7752859 DOI: 10.3389/fmicb.2020.608752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.
Collapse
Affiliation(s)
- Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, Tucuman, Argentina
| | - Flavia Mansilla
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Lorena Arce
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Tucumán, Argentina
| | - Binghui Zhou
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Imad Al Kassaa
- Faculty of Public Health, Lebanese University, Hadath, Lebanon
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Zhou B, Albarracin L, Indo Y, Arce L, Masumizu Y, Tomokiyo M, Islam MA, Garcia-Castillo V, Ikeda-Ohtsubo W, Nochi T, Morita H, Takahashi H, Kurata S, Villena J, Kitazawa H. Selection of Immunobiotic Ligilactobacillus salivarius Strains from the Intestinal Tract of Wakame-Fed Pigs: Functional and Genomic Studies. Microorganisms 2020; 8:microorganisms8111659. [PMID: 33114778 PMCID: PMC7716343 DOI: 10.3390/microorganisms8111659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
In this article, Ligilactobacillus salivarius FFIG strains, isolated from the intestinal tract of wakame-fed pigs, are characterized according to their potential probiotic properties. Strains were evaluated by studying their interaction with porcine intestinal epithelial (PIE) cells in terms of their ability to regulate toll-like receptor (TLR)-3- or TLR4-mediated innate immune responses, as well as by assessing their adhesion capabilities to porcine epithelial cells and mucins. These functional studies were complemented with comparative genomic evaluations using the complete genome sequences of porcine L. salivarius strains selected from subgroups that demonstrated different “immune” and “adhesion” phenotypes. We found that their immunomodulatory and adhesion capabilities are a strain-dependent characteristic. Our analysis indicated that the differential immunomodulatory and adhesive activities of FFIG strains would be dependent on the combination of several surface structures acting simultaneously, which include peptidoglycan, exopolysaccharides, lipoteichoic acid, and adhesins. Of note, our results indicate that there is no correlation between the immunomodulatory capacity of the strains with their adhesion ability to mucins and epithelial cells. Therefore, in the selection of strains destined to colonize the intestinal mucosa and modulate the immunity of the host, both properties must be adequately evaluated. Interestingly, we showed that L. salivarius FFIG58 functionally modulated the innate immune responses triggered by TLR3 and TLR4 activation in PIE cells and efficiently adhered to these cells. Moreover, the FFIG58 strain was capable of reducing rotavirus replication in PIE cells. Therefore, L. salivarius FFIG58 is a good candidate for further in vivo studying the protective effect of lactobacilli against intestinal infections in the porcine host. We also reported and analyzed, for the first time, the complete genome of several L. salivarius strains that were isolated from the intestine of pigs after the selective pressure of feeding the animals with wakame. Further genomic analysis could be of value to reveal the metabolic characteristics and potential of the FFIG strains in general and of the FFIG58 strain, in particular, relating to wakame by-products assimilation.
Collapse
Affiliation(s)
- Binghui Zhou
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Sciences and Technology, National University of Tucuman, Tucuman 4000, Argentina
| | - Yuhki Indo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Lorena Arce
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Infection Biology Laboratory, INSIBIO-CONICET, Faculty of Medicine, University of Tucuman, Tucuman 4000, Argentina
| | - Yuki Masumizu
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Valeria Garcia-Castillo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Tomonori Nochi
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan;
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Correspondence: (J.V.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Correspondence: (J.V.); (H.K.)
| |
Collapse
|
20
|
Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol 2020; 120:104922. [PMID: 33045616 DOI: 10.1016/j.archoralbio.2020.104922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES epigallocatechin gallate and gallic acid are known antimicrobial agents. Their roles in controlling microbial colonization, such as bacterial attachment and biofilm formation, are however not completely clear. This study aims to investigate their effects on the colonization of abiotic surfaces by oral bacteria and study the mechanism of their activities. DESIGN the effects of epigallocatechin gallate and gallic acid on cell surface physicochemical properties (hydrophobicity and charge) of a range of oral bacteria and their auto-aggregation, attachment and biofilm formation on different abiotic surfaces (glass, stainless steel and hydroxyapatite) were studied. RESULTS results show that epigallocatechin gallate inhibited bacterial attachment to the hard surfaces (except hydroxyapatite) by 0.2-1.4 log CFU cm-2 by affecting cell surface hydrophobicity and charge. In addition, epigallocatechin gallate induced notches on cell surfaces of Streptococcus mutans without affecting their viability and biofilm formation. Gallic acid enhanced auto-aggregation (by 7.9-30.6 %) and biofilm formation by Actinomyces naeslundii (by 0.9-1.2 log CFU cm-2) by causing calcium efflux from the cells. CONCLUSIONS the tested phytochemicals influenced the colonization of abiotic surfaces by oral bacteria through different mechanisms, most notably via affecting cell surface physicochemical properties, inducing changes in the shape of cell envelopes and causing calcium efflux.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
21
|
Hong P, Wu X, Shu Y, Wang C, Tian C, Wu H, Xiao B. Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2020; 303:122905. [PMID: 32032938 DOI: 10.1016/j.biortech.2020.122905] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
A strain with efficient biofilm-formation and aerobic denitrification capabilities was isolated and identified as Pseudomonas mendocina IHB602. In pure culture, strain IHB602 removed almost all NO3--N, NO2--N, and NH4+-N (initial concentrations 50 mg/L) within 24 h. The strain produced large amounts of extracellular polymeric substances (maximum 430.33 mg/g cell dry weight) rich in protein but containing almost no humic acid. This, and strong autoaggregation (maximum 47.09%) and hydrophobicity (maximum 85.07%), imparted strain IHB602 with biofilm forming traits. A sequencing batch biofilm reactor bioaugmented with strain IHB602 (SBBR1) had more rapid biofilm-formation than the control without strain IHB602 inoculation (SBBR2). During the stabilization period, the effluent removal ratios for NH4+-N (95%), NO3--N (91%) and TN (88%) in SBBR1 were significantly higher than those in SBBR2 (NH4+-N: 91%, NO3--N: 88%, TN: 82%). Microbial community structure analysis revealed that strain IHB602 successfully proliferated and contributed to nitrogen removal as well as biofilm formation.
Collapse
Affiliation(s)
- Pei Hong
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Host-adapted lactobacilli in food fermentations: impact of metabolic traits of host adapted lactobacilli on food quality and human health. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol 2019; 27:690-702. [PMID: 30987817 DOI: 10.1016/j.tim.2019.03.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
With the specter of resurgence of pathogens due to the propagation of antibiotic-resistance genes, innovative antimicrobial strategies are needed. In this review, we summarize the beneficial aspects of bacteriocins, a set of miscellaneous peptide-based bacterium killers, compared with classical antibiotics, and emphasize their use in cocktails to curb the emergence of new resistance. We highlight that their prey spectrum, their molecular malleability, and their multiple modes of production might lead to specific and personalized treatments to prevent systemic disorders. Complementarily, we discuss how we might exploit prevailing bacterial commensals, such as Streptococcus salivarius, and deliberately mobilize their bacteriocin arsenal 'on site' to cure multiresistant infections or finely reshape the endogenous microbiota for prophylaxis purposes.
Collapse
Affiliation(s)
- Pascal Hols
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Philippe Gabant
- Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium
| | - Johann Mignolet
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium; Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium.
| |
Collapse
|
24
|
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14:11. [PMID: 30936939 PMCID: PMC6425673 DOI: 10.1186/s13020-019-0232-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Biofilm is a natural form of bacterial growth ubiquitously in environmental niches. The biofilm formation results in increased resistance to negative environmental influences including resistance to antibiotics and antimicrobial agents. Quorum sensing (QS) is cell-to-cell communication mechanism, which plays an important role in biofilm development and balances the environment when the bacteria density becomes high. Due to the prominent points of biofilms implicated in infectious disease and the spread of multi-drug resistance, it is urgent to discover new antibacterial agents that can regulate biofilm formation and development. Accumulated evidences demonstrated that natural products from plants had antimicrobial and chemo-preventive properties in modulation of biofilm formation in the last two decades. This review will summarize recent studies on the discovery of natural anti-biofilm agents from plants with clear-cut mechanisms or identified molecular addresses, as well as some herbs with unknown mechanisms or unidentified bioactive ingredients. We also focus on the progression of techniques on the extraction and identification of natural anti-biofilm substances. Besides, anti-biofilm therapeutics undergoing clinical trials are discussed. These newly discovered natural anti-biofilm agents are promising candidates which could provide novel strategies for biofilm-associated infections.
Collapse
Affiliation(s)
- Lan Lu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China.,2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China
| | - Wei Hu
- 4Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong People's Republic of China.,5Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zeru Tian
- 6School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Dandan Yuan
- 7Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong People's Republic of China
| | - Guojuan Yi
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Yangyang Zhou
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Qiang Cheng
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Jie Zhu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Mingxing Li
- 2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan People's Republic of China
| |
Collapse
|
25
|
Ben Hamed S, Tavares Ranzani-Paiva MJ, Tachibana L, de Carla Dias D, Ishikawa CM, Esteban MA. Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. FISH & SHELLFISH IMMUNOLOGY 2018; 80:550-562. [PMID: 29966687 DOI: 10.1016/j.fsi.2018.06.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Wild fisheries are declining due to over-fishing, climate change, pollution and marine habitat destructions among other factors, and, concomitantly, aquaculture is increasing significantly around the world. Fish infections caused by pathogenic bacteria are quite common in aquaculture, although their seriousness depends on the season. Drug-supplemented feeds are often used to keep farmed fish free from the diseases caused by such bacteria. However, given that bacteria can survive well in aquatic environments independently of their hosts, bacterial diseases have become major impediments to aquaculture development. On the other hand, the indiscriminate uses of antimicrobial agents has led to resistant strains and the need to switch to other antibiotics, although it seems that an integrated approach that considers not only the pathogen but also the host and the environment will be the most effective method in the long-term to improve aquatic animal health. This review covers the mechanisms of bacterial pathogenicity and details the foundations underlying the interactions occurring between pathogenic bacteria and the fish host in the aquatic environment, as well as the factors that influence virulence. Understanding and linking the different phenomena that occur from adhesion to colonization of the host will offer novel and useful means to help design suitable therapeutic strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Said Ben Hamed
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Maria José Tavares Ranzani-Paiva
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Leonardo Tachibana
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Danielle de Carla Dias
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Carlos Massatoshi Ishikawa
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - María Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence, ''Campus Mare Nostrum'', University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|