1
|
Kiyokawa K, Yamamoto S, Moriguchi K, Sugiyama M, Hisatomi T, Suzuki K. Construction of versatile yeast plasmid vectors transferable by Agrobacterium-mediated transformation and their application to bread-making yeast strains. J Biosci Bioeng 2023; 136:142-151. [PMID: 37263830 DOI: 10.1016/j.jbiosc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Kazuki Moriguchi
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima 731-519, Japan.
| | - Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
2
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
3
|
Kiyokawa K, Ohmine Y, Yunoki K, Yamamoto S, Moriguchi K, Suzuki K. Enhanced Agrobacterium-mediated transformation revealed attenuation of exogenous plasmid DNA installation in recipient bacteria by exonuclease VII and SbcCD. Genes Cells 2020; 25:663-674. [PMID: 32799424 DOI: 10.1111/gtc.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
In DNA transfer via type IV secretion system (T4SS), relaxase enzyme releases linear ssDNA in donor cells and recircularizes in recipient cells. Using VirB/D4 T4SS, Agrobacterium cells can transfer an IncQ-type plasmid depending on Mob relaxase and a model T-DNA plasmid depending on VirD2 relaxase. Mobilization to Escherichia coli of the former plasmid is much more efficient than that of the latter, whereas an entirely reverse relationship is observed in transfer to yeast. These data suggest that either plasmid recircularization or conversion of ssDNA to dsDNA in the recipient bacterial cells is a rate-limiting step of the transfer. In this study, we examined involvement of exonuclease genes in the plasmid acceptability. By the VirD2-dependent T-DNA plasmid, E. coli sbcDΔ and sbcCΔ mutant strains produced threefold more exconjugants, and a sbcDΔ xseAΔ mutant strain yielded eightfold more exconjugants than their wild-type strain. In contrast to the enhancing effect on the VirD2-mediated transfer, the mutations exhibited a subtle effect on the Mob-mediated transfer. These results support our working hypothesis that VirD2 can transport its substrate ssDNA efficiently to recipient cells and that recipient nucleases degrade the ssDNA because VirD2 has some defect(s) in the circularization and completion of complementary DNA synthesis.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yuta Ohmine
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Yunoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Zhang J, Fu B, Lin Q, Riley IT, Ding S, Chen L, Cui J, Yang L, Li H. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi). PLoS One 2020; 15:e0232770. [PMID: 32369513 PMCID: PMC7199937 DOI: 10.1371/journal.pone.0232770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cereal cyst nematodes cause serious yield losses of wheat in Hunaghuai winter wheat growing region in China. Beauveria bassiana 08F04 isolated from the surface of cysts is a promising biological control agent for cereal cyst nematodes. As the colonization capacity is a crucial criteria to assess biocontrol effectiveness for a microbial agent candidate, we aimed to label B. bassiana 08F04 for efficient monitoring of colonization in the soil. The binary pCAM-gfp plasmid containing sgfp and hph was integrated into B. bassiana 08F04 using the Agrobacterium tumefaciens-mediated transformation. The transformation caused a significant change in mycelial and conidial yields, and in extracellular chitinase activity in some transformants. The cultural filtrates of some transformants also decreased acetylcholinesterase activity and the survival of Heterodera filipjevi second-stage juveniles relative to the wild-type strain. One transformant (G10) had a growth rate and biocontrol efficacy similar to the wild-type strain, so it was used for a pilot study of B. bassiana colonization conducted over 13 weeks. Real-time PCR results and CFU counts revealed that the population of G10 increased quickly over the first 3 weeks, then decreased slowly over the following 4 weeks before stabilizing. In addition, the application of wild-type B. bassiana 08F04 and transformant G10 significantly reduced the number of H. filipjevi females in roots by 64.4% and 60.2%, respectively. The results of this study have practical applications for ecological, biological and functional studies of B. bassiana 08F04 and for bionematicide registration.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Qitong Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ian T. Riley
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiangkuan Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (LY); (HL)
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- * E-mail: (LY); (HL)
| |
Collapse
|