1
|
Jalalizadeh F, Njamkepo E, Weill FX, Goodarzi F, Rahnamaye-Farzami M, Sabourian R, Bakhshi B. Genetic approach toward linkage of Iran 2012-2016 cholera outbreaks with 7th pandemic Vibrio cholerae. BMC Microbiol 2024; 24:33. [PMID: 38254012 PMCID: PMC10801964 DOI: 10.1186/s12866-024-03185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Vibrio cholerae, as a natural inhabitant of the marine environment is among the world-leading causes of diarrheal diseases. The present study aimed to investigate the genetic relatedness of Iran 2012-2016 V. cholerae outbreaks with 7th pandemic cholera and to further characterize the non-ST69/non-ST75 sequence types strains by whole-genome sequencing (WGS).Twenty V. cholerae isolates related to 2012, 2013, 2015 and 2016 cholera outbreaks were studied by two genotyping methods - Pulsed-field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST)-and by antimicrobial susceptibility testing. Seven sequence types (STs) and sixteen pulsotypes were detected. Sequence type 69 was the most abundant ST confirming that most (65%, 13/20) of the studied isolates collected in Iran between 2012 and 2016 belonged to the 7th pandemic clone. All these ST69 isolates (except two) exhibited similar pulsotypes. ST75 was the second most abundant ST. It was identified in 2015 and 2016. ST438, ST178, ST579 and STs of 983 and 984 (as newfound STs) each were only detected in one isolate. All strains collected in 2016 appeared as distinct STs and pulsotypes indicative of probable different originations. All ST69 strains were resistant to nalidixic acid. Moreover, resistance to nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline was only observed in strains of ST69. These properties propose the ST69 as a unique genotype derived from a separate lineage with distinct resistance properties. The circulation of V. cholerae ST69 and its traits in recent years in Iran proposes the 7th pandemic strains as the ongoing causes of cholera outbreaks in this country, although the role of ST75 as the probable upcoming dominant ST should not be ignored.Genomic analysis of non-ST69/non-ST75 strains in this study showed ST579 is the most similar ST type to 7th pandemic sequence types, due to the presence of wild type-El Tor sequences of tcpA and VC-1319, VC-1320, VC-1577, VC-1578 genes (responsible for polymyxin resistance in El Tor biotype), the traits of rstC of RS1 phage in one strain of this ST type and the presence of VPI-1 and VSP-I islands in ST579 and ST178 strains. In silico analysis showed no significant presence of resistance genes/cassettes/plasmids within non-ST69/non-ST75 strains genomes. Overall, these data indicate the higher susceptibility of V. cholerae non-ST69/non-ST75 strains in comparison with more ubiquitous and more circulating ST69 and ST75 strains.In conclusion, the occurrence of small outbreaks and sporadic cholera cases due to V. cholerae ST69 in recent years in Iran shows the 7th pandemic strains as the persistent causes of cholera outbreaks in this country, although the role of ST75 as the second most contributed ST should not be ignored. The occurrence of non-ST69/non-ST75 sequence types with some virulence factors characteristics in border provinces in recent years is noteworthy, and further studies together with surveillance efforts are expected to determine their likely route of transport.
Collapse
Affiliation(s)
- Fatemeh Jalalizadeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Qin ZX, Chen GZ, Yang QQ, Wu YJ, Sun CQ, Yang XM, Luo M, Yi CR, Zhu J, Chen WH, Liu Z. Cross-Platform Transcriptomic Data Integration, Profiling, and Mining in Vibrio cholerae. Microbiol Spectr 2023; 11:e0536922. [PMID: 37191528 PMCID: PMC10269641 DOI: 10.1128/spectrum.05369-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
A large number of transcriptome studies generate important data and information for the study of pathogenic mechanisms of pathogens, including Vibrio cholerae. V. cholerae transcriptome data include RNA-seq and microarray: microarray data mainly include clinical human and environmental samples, and RNA-seq data mainly focus on laboratory processing conditions, including different stresses and experimental animals in vivo. In this study, we integrated the data sets of both platforms using Rank-in and the Limma R package normalized Between Arrays function, achieving the first cross-platform transcriptome data integration of V. cholerae. By integrating the entire transcriptome data, we obtained the profiles of the most active or silent genes. By transferring the integrated expression profiles into the weighted correlation network analysis (WGCNA) pipeline, we identified the important functional modules of V. cholerae in vitro stress treatment, gene manipulation, and in vitro culture as DNA transposon, chemotaxis and signaling, signal transduction, and secondary metabolic pathways, respectively. The analysis of functional module hub genes revealed the uniqueness of clinical human samples; however, under specific expression patterning, the Δhns, ΔoxyR1 strains, and tobramycin treatment group showed high expression profile similarity with human samples. By constructing a protein-protein interaction (PPI) interaction network, we discovered several unreported novel protein interactions within transposon functional modules. IMPORTANCE We used two techniques to integrate RNA-seq data for laboratory studies with clinical microarray data for the first time. The interactions between V. cholerae genes were obtained from a global perspective, as well as comparing the similarity between clinical human samples and the current experimental conditions, and uncovering the functional modules that play a major role under different conditions. We believe that this data integration can provide us with some insight and basis for elucidating the pathogenesis and clinical control of V. cholerae.
Collapse
Affiliation(s)
- Zi-Xin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Zhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Qian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying-Jian Wu
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Chu-Qing Sun
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun-Rong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Molecular detection and phylogenetic analysis of Vibrio cholerae genotypes in Hillah, Iraq. New Microbes New Infect 2020; 37:100739. [PMID: 32874595 PMCID: PMC7452163 DOI: 10.1016/j.nmni.2020.100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae is a cause of serious endemic diarrhoea associated with cholera in many regions in the world. A total of 256 stool and rectal swabs were collected from patients suspected to have cholera admitted to three hospitals in Hillah, Babylon Governorate, Iraq, for the period 1 September to 29 December 2017. After the routine culture of samples for isolation and identification of V. cholerae isolates, PCR was performed for molecular detection of V. cholerae isolates based on 16S ribosomal RNA gene. Toxigenicity was detected by RTX toxin genes. PCR technique emphasized molecular detection of V. cholerae for eight isolates. Only two isolates (25%) possessed both the rtxA and rtxC genes, while only three isolates (37.5%) possessed the rtxB gene. DNA sequencing was performed for the eight isolates via analysis and phylogenetic tree. The observed bacterial variants were compared to their neighbour homologous reference sequences using the National Center for Biotechnology Information (NCBI) BLAST server (Basic Local Alignment Search Tool; https://blast.ncbi.nlm.nih.gov/Blast.cgi). The findings indicated that the eight investigated isolates of V. cholerae were positioned in three different phylogenetic positions. Partial sequence dissimilarities were reported between GenBank isolate accession number MK212155.1 and these six clustered GenBank accession numbers of the same species. For the first time in Babylon Governorate, Iraq, the molecular assay, sequencing and phylogenetic tree are reported for V. cholerae and their toxins isolated during the 2017 cholera outbreak.
Collapse
|
5
|
Kanampalliwar A, Singh DV. Virulence Pattern and Genomic Diversity of Vibrio cholerae O1 and O139 Strains Isolated From Clinical and Environmental Sources in India. Front Microbiol 2020; 11:1838. [PMID: 32982995 PMCID: PMC7479179 DOI: 10.3389/fmicb.2020.01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is an autochthonous inhabitant of the aquatic environment. Several molecular methods have been used for typing V. cholerae strains, but there is no proper database for such scheme, including multilocus sequence typing (MLST) for V. cholerae O1 and O139 strains. We used 54 V. cholerae O1 and three O139 strains isolated from clinical and environmental sources and regions of India during the time period of 1975-2015 to determine the presence of virulence genes and production of biofilm. We devised a MLST scheme and developed a database for typing V. cholerae strains. Also, we performed pulsed-field gel electrophoresis to see the genomic diversity among them and compared it with MLST. We used the MEGA 7.0 software for the alignment and comparison of different nucleotide sequences. The advanced cluster analysis was performed to define complexes. All strains of V. cholerae, except five strains, showed variation in phenotypic characteristics but carried virulence-associated genes indicating they belonged to the El Tor/hybrid/O139 variants. MLST analysis showed 455 sequences types among V. cholerae strains, irrespective of sources and places of isolation. With these findings, we set up an MLST database on PubMLST.org using the BIGSdb software for V. cholerae O1 and O139 strains, which is available at https://pubmlst.org/vcholerae/ under the O1/O139 scheme. The pulsed-field gel electrophoresis (PFGE) fingerprint showed six fingerprint patterns namely E, F, G, H, I, and J clusters among 33 strains including strain N16961 carrying El Tor ctxB of which cluster J representing O139 strain was entirely different from other El Tor strains. Twenty strains carrying Haitian ctxB showed a fingerprint pattern classified as cluster A. Of the five strains, four carrying classical ctxB comprising two each of El Tor and O139 strains and one El Tor strain carrying Haitian ctxB clustered together under cluster B along with V. cholerae 569B showing pattern D. This study thus indicates that V. cholerae strains are undergoing continuous genetic changes leading to the emergence of new strains. The MLST scheme was found more appropriate compared to PFGE that can be used to determine the genomic diversity and population structure of V. cholerae.
Collapse
Affiliation(s)
- Amol Kanampalliwar
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|