1
|
Letafati A, Mehdigholian Chaijani R, Edalat F, Eslami N, Askari H, Askari F, Shirvani S, Talebzadeh H, Tarahomi M, MirKhani N, Karimi F, Norouzi M, Mozhgani SH. Advances in epigenetic treatment of adult T-cell leukemia/lymphoma: a comprehensive review. Clin Epigenetics 2025; 17:39. [PMID: 40025589 PMCID: PMC11871821 DOI: 10.1186/s13148-025-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infection causes the uncommon and deadly cancer known as adult T-cell leukemia/lymphoma (ATLL), which affects mature T cells. Its clinical appearance is varied, and its prognosis is often miserable. Drug resistance to conventional therapies confers significant therapeutic challenges in the management of ATLL. This review discusses the emerging role of epigenetic medical advances in the treatment of ATLL, focusing on DNA methyltransferase inhibitors, histone deacetylase inhibitors, histone methyltransferase inhibitors, and BET inhibitors. Indeed, several classes of epigenetic therapies currently exhibit trailed efficacy in preclinical and clinical studies: DNA methyltransferase inhibitors like azacitidine and decitabine reexpression of silenced tumor suppressors; histone deacetylase inhibitors like vorinostat and romidepsin induce cell cycle arrest and apoptosis; bromodomain and extra-terminal inhibitors like JQ1 disrupt oncogenic signaling pathways. Whereas preclinical and early clinical data indicate modest to good efficacy for such treatments, significant challenges remain. Here, we discuss the current state of understanding of epigenetic dysregulation in ATLL and appraise the evidence supporting the use of these epi-drugs. However, despite the opened doors of epigenetic treatment, much more research is required with regard to showing the best combinations of drugs and their resistance mechanisms, the minimization of adverse effects, and how this hope will eventually be translated into benefit for the patient with ATLL.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahime Edalat
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nazila Eslami
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Hanieh Askari
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Farideh Askari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Sara Shirvani
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Hamed Talebzadeh
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Mahdiyeh Tarahomi
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nila MirKhani
- Department of Microbiology, Faculty of Science, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Faeze Karimi
- Department of Medical Laboratory, Shahrood University of Medical Sciences, Shahrood, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
2
|
Campos MC, Barbosa IR, Guedes GP, Echevarria A, Echevarria-Lima J, Chaves OA. Novel Zn(II)-complex with hybrid chalcone-thiosemicarbazone ligand: Synthesis, characterization, and inhibitory effect on HTLV-1-infected MT-2 leukemia cells. J Inorg Biochem 2023; 245:112239. [PMID: 37148641 DOI: 10.1016/j.jinorgbio.2023.112239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Chalcone and thiosemicarbazone have attracted attention due to their easy synthetic procedure and high success in the development of antiviral and antitumor, however, there are few biological data on the evaluation of chalcone-thiosemicarbazone hybrids and their complexation with metal ions. In this sense, the present work reports the synthesis and characterization of the hybrid (Z)-2-((E)-3-(4-chlorophenyl)-1-phenylallylidene)hydrazine-1-carbothioamide (CTCl) and its Zn(II)-complex (CTCl-Zn). The compounds were cell-based evaluated in terms of cytotoxicity against human T-cell lymphotropic virus type 1 (HTLV-1) infected leukemia cells (MT-2) and the experimental data were correlated with molecular docking calculations. The ligand and Zn(II)-complex were easily synthesized with a good yield - 57% and 79%, respectively. The dynamic of E/Z isomers with respect to the imine bond configuration of CTCl was evidenced by 1H NMR experiments in DMSO‑d6, while the X-ray diffraction of CTCl-Zn showed that Zn(II) ion is tetracoordinated to two ligands in a bidentate mode and the metal ion lies on an intermediate geometry between the see-saw and trigonal pyramid. The ligand and complex exhibited low toxicity and the Zn(II)-complex is more cytotoxic than the ligand, with the corresponding IC50 value of 30.01 and 47.06 μM. Both compounds had a pro-apoptotic effect without the release of reactive oxygen species (ROS) and they can interact with DNA via minor grooves driven by van der Waals forces.
Collapse
Affiliation(s)
- Maria Clara Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Resendes Barbosa
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Aurea Echevarria
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Otávio Augusto Chaves
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga s/n, Coimbra, Portugal.
| |
Collapse
|
3
|
Chiu E, Samra B, Tam E, Baseri B, Lin B, Luhrs C, Gonsky J, Sawas A, Taiwo E, Sidhu G. Clinical Characteristics and Outcomes of Caribbean Patients With Adult T-Cell Lymphoma/Leukemia at Two Affiliated New York City Hospitals. JCO Glob Oncol 2021; 6:548-556. [PMID: 32243210 PMCID: PMC7195818 DOI: 10.1200/jgo.19.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Adult T-cell lymphoma/leukemia (ATL) is a rare and aggressive peripheral T-cell malignancy caused by human T-cell lymphotropic virus-1 infection, which occurs in areas of high prevalence, predominantly in Japan and the Caribbean basin. Most ATL literature is derived from Japan and little is published about Caribbean patients. We describe the clinicopathologic characteristics and treatment outcomes of our Caribbean patients who have ATL at the State University of New York Downstate Medical Center and Kings County Hospital. PATIENTS AND METHODS We conducted a retrospective analysis of our patients with ATL who were diagnosed between 2005 and 2017. Medical records were reviewed for clinicopathologic data and treatment outcomes. The final analysis included acute and lymphomatous subtypes only. For the univariable analysis, outcomes were calculated by using a log-rank test, and survival curves were estimated by the Kaplan-Meier method. RESULTS We identified 63 patients with acute (55%) and lymphomatous (45%) subtypes, 95% of whom had Ann Arbor stage III to IV disease. The median age was 54 years, and the study population was predominantly female (65%). Most patients (82%) received first-line etoposide, cyclophosphamide, vincristine, doxorubicin, and prednisone (EPOCH) or cyclophosphamide, vincristine, doxorubicin, and prednisone (CHOP) chemotherapy (10%) with an overall response rate of 46%. The median overall survival was 5.5 months, and the median progression-free survival was 4 months. Incidence of atypical immunophenotype (32%) was higher than previously reported in the Japanese literature and was associated with worse survival (P = .04). Abnormal cytogenetics correlated with shorter progression-free survival (P < .05). CONCLUSION We describe here the clinicopathologic characteristics and treatment outcomes of our Caribbean patients with aggressive ATL, which is largely chemotherapy resistant, and the challenges of treating a population with unmet medical needs.
Collapse
Affiliation(s)
- Edwin Chiu
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| | - Bachar Samra
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| | - Eric Tam
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| | - Babak Baseri
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| | - Bo Lin
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Carol Luhrs
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| | - Jason Gonsky
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY.,Department of Medicine, Division of Hematology and Medical Oncology, New York City Health and Hospitals/Kings County, Brooklyn, NY
| | - Ahmed Sawas
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, NY
| | - Evelyn Taiwo
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY.,Department of Medicine, Division of Hematology and Medical Oncology, New York City Health and Hospitals/Kings County, Brooklyn, NY
| | - Gurinder Sidhu
- Department of Medicine, Division of Hematology and Medical Oncology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
4
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Dos Santos DF, de Pilger DRB, Vandermeulen C, Khouri R, Mantoani SP, Nunes PSG, de Andrade P, Carvalho I, Casseb J, Twizere JC, Willems L, Freitas-Junior L, Kashima S. Non-cytotoxic 1,2,3-triazole tethered fused heterocyclic ring derivatives display Tax protein inhibition and impair HTLV-1 infected cells. Bioorg Med Chem 2020; 28:115746. [PMID: 33007558 DOI: 10.1016/j.bmc.2020.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10-20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL.
Collapse
Affiliation(s)
- Daiane Fernanda Dos Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Denise Regina Bairros de Pilger
- Federal University of São Paulo, São Paulo, São Paulo, Brazil; Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ricardo Khouri
- Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jean-Claude Twizere
- Protein Signaling and Interactions (GIGA), University of Liège, Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA), University of Liège, Liège, Belgium
| | - Lucio Freitas-Junior
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Simone Kashima
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Synthetic ( E)-3-Phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium Chloride Derivatives as Promising Chemotherapy Agents on Cell Lines Infected with HTLV-1. Molecules 2020; 25:molecules25112537. [PMID: 32486038 PMCID: PMC7321218 DOI: 10.3390/molecules25112537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Synthesis of four compounds belonging to mesoionic class, (E)-3-phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride derivatives (5a–d) and their biological evaluation against MT2 and C92 cell lines infected with human T-cell lymphotropic virus type-1 (HTLV-1), which causes adult T-cell leukemia/lymphoma (ATLL), and non-infected cell lines (Jurkat) are reported. The compounds were obtained by convergent synthesis under microwave irradiation and the cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Results showed IC50 values of all compounds in the range of 1.51–7.70 μM in HTLV-1-infected and non-infected cells. Furthermore, it was observed that 5b could induce necrosis after 24 h for Jurkat and MT2 cell lines. The experimental (fluorimetric method) and theoretical (molecular docking) results suggested that the mechanism of action for 5b could be related to its capacity to intercalate into DNA. Moreover, the preliminary pharmacokinetic profile of the studied compounds (5a–d) was obtained through human serum albumin (HSA) binding affinity using multiple spectroscopic techniques (circular dichroism, steady-state and time-resolved fluorescence), zeta potential and molecular docking calculations. The interaction HSA:5a–d is spontaneous and moderate (Ka ~ 104 M−1) via a ground-state association, without significantly perturbing both the secondary and surface structures of the albumin in the subdomain IIA (site I), indicating feasible biodistribution in the human bloodstream.
Collapse
|
7
|
Matteucci C, Marino-Merlo F, Minutolo A, Balestrieri E, Valletta E, Macchi B, Mastino A, Grelli S. Inhibition of IκBα phosphorylation potentiates regulated cell death induced by azidothymidine in HTLV-1 infected cells. Cell Death Discov 2020; 6:9. [PMID: 32123585 PMCID: PMC7028944 DOI: 10.1038/s41420-020-0243-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATL) can be susceptible, at least transiently, to treatments with azidothymidine (AZT) plus IFNα and/or arsenic trioxide. However, the real role of AZT in this effect is still unclear. In fact, while reverse transcriptase (RT) inhibition could explain reduction of clonal expansion and of renewal of HTLV-1 infected cells during ATL progression, this effect alone seems insufficient to justify the evident and prompt decrease of the pro-viral load in treated patients. We have previously demonstrated that AZT is endowed with an intrinsic pro-apoptotic potential towards both peripheral blood mononuclear cells from healthy donors or some tumor cell lines, but this cytotoxic potential cannot be fully achieved unless IκBα phosphorylation is inhibited. Since the constitutive activation of NF-kappa B (NF-κB) appears a common biological basis of HTLV-1-infected cells, a pharmacological inhibition of IκBα phosphorylation seems a potential strategy for treating and preventing HTLV-1 related pathologies. In this study, we have demonstrated that a combination treatment with the IκBα phosphorylation inhibitor Bay 11-7085 and AZT induced increased levels of regulated cell death (RCD) by apoptosis compared to the single treatments in HTLV-1 infected cells of different origin. Importantly, levels of RCD were considerably higher in infected cells in comparison with the uninfected ones. Inhibition of NF-κB activation following the combined treatment was confirmed by analysis of both gel-shift and functional activity of the NF-κB complex proteins, p65/p52. Moreover, a transcriptional analysis revealed that the addition of Bay 11-7085 to AZT treatment in HTLV-1-infected cells modified their transcriptional profile, by inducing the upregulation of some pro-apoptotic genes together with the downregulation of some anti-apoptotic genes. Our data suggest that addition of adequate concentrations of IκBα phosphorylation inhibitor to therapeutic regimens including AZT could be a promising strategy in ATL.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Elena Valletta
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- The Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
8
|
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, Romanelli MG. NF-κB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019; 8:E290. [PMID: 31835460 PMCID: PMC6963194 DOI: 10.3390/pathogens8040290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells. Tax-1 deregulates several cellular pathways affecting the cell cycle, survival, and proliferation. The effects of Tax-1 on the NF-κB pathway have been thoroughly studied. Recent studies also revealed the impact of Tax-1 and HBZ on microRNA expression. In this review, we summarize the recent progress in understanding the contribution of HTLV-1 Tax- and HBZ-mediated deregulation of NF-κB and the microRNA regulatory network to HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| |
Collapse
|
9
|
Mușat MG, Nițulescu GM, Surleac M, Tsatsakis A, Spandidos DA, Margină D. HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Mol Med Rep 2019; 20:4749-4762. [PMID: 31702817 PMCID: PMC6854553 DOI: 10.3892/mmr.2019.10777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Transposases are ubiquitous mobile genetic elements responsible for genome development, driving rearrangements, such as insertions, deletions and translocations. Across species evolution, some transposases are tamed by their host and are made part of complex cellular systems. The proliferation of retroviruses is also dependent on transposase related enzymes termed integrases. Recombination‑activating gene protein (RAG)1 and metnase are just two examples of transposase domestication and together with retroviral integrases (INs), they belong to the DDE polynucleotidyl transferases superfamily. They share mechanistic and structural features linked to the RNase H‑like fold, harboring a DDE(D) metal dependent catalytic motif. Recent antiretroviral compounds target the catalytic domain of integrase, but they also have the potential of inhibiting other related enzymes. In this review, we report the activity of different classes of integrase inhibitors on various DDE transposases. Computational simulations are useful to predict the extent of off‑target activity and have been employed to study the interactions between RAG1 recombinase and compounds from three different pharmacologic classes. We demonstrate that strand‑transfer inhibitors display a higher affinity towards the RAG1 RNase H domain, as suggested by experimental data compared to allosteric inhibitors. While interference with RAG1 and 2 recombination is associated with a negative impact on immune function, the inhibition of metnase or HTLV‑1 integrase opens the way for the development of novel therapies for refractory cancers.
Collapse
Affiliation(s)
- Mihaela Georgiana Mușat
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - George Mihai Nițulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Marius Surleac
- National Institute for Infectious Diseases ‘Matei Bals’, 021105 Bucharest, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margină
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
10
|
Kamoi K, Okayama A, Izumo S, Hamaguchi I, Uchimaru K, Tojo A, Ohno-Matsui K. Adult T-Cell Leukemia/Lymphoma-Related Ocular Manifestations: Analysis of the First Large-Scale Nationwide Survey. Front Microbiol 2019; 9:3240. [PMID: 30671044 PMCID: PMC6331419 DOI: 10.3389/fmicb.2018.03240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a rare and aggressive T-cell malignancy with a high mortality rate, resulting in a lack of information among ophthalmologists. Here, we investigated the state of ophthalmic medical care for ATL and ATL-related ocular manifestations by conducting the first large-scale nationwide survey in Japan. A total of 115 facilities were surveyed, including all university hospitals in Japan that were members of the Japanese Ophthalmological Society and regional core facilities that were members of the Japanese Ocular Inflammation Society. The collected nationwide data on the state of medical care for ATL-related ocular manifestations and ATL-associated ocular findings were categorized, tallied, and analyzed. Of the 115 facilities, 69 (60%) responded. Overall, 28 facilities (43.0%) had experience in providing ophthalmic care to ATL patients. ATL-related ocular manifestations were most commonly diagnosed “based on blood tests and characteristic ophthalmic findings.” By analyzing the 48 reported cases of ATL-related ocular manifestations, common ATL-related ocular lesions were intraocular infiltration (22 cases, 45.8%) and opportunistic infections (19 cases, 39.6%). All cases of opportunistic infection were cytomegalovirus retinitis. Dry eye (3 cases, 6.3%), scleritis (2 cases, 4.2%), uveitis (1 case, 2.1%), and anemic retinopathy (1 case, 2.1%) were also seen. In conclusion, intraocular infiltration and cytomegalovirus retinitis are common among ATL patients, and ophthalmologists should keep these findings in mind in their practice.
Collapse
Affiliation(s)
- Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Okayama
- Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuji Izumo
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|