1
|
Ramudingana P, Makhado N, Kamutando CN, Thantsha MS, Mamphogoro TP. Fungal Biocontrol Agents in the Management of Postharvest Losses of Fresh Produce-A Comprehensive Review. J Fungi (Basel) 2025; 11:82. [PMID: 39852501 PMCID: PMC11766600 DOI: 10.3390/jof11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Postharvest decay of vegetables and fruits presents a significant threat confronting sustainable food production worldwide, and in the recent times, applying synthetic fungicides has become the most popular technique of managing postharvest losses. However, there are concerns and reported proofs of hazardous impacts on consumers' health and the environment, traceable to the application of chemical treatments as preservatives on fresh produce. Physical methods, on the other hand, cause damage to fresh produce, exposing it to even more infections. Therefore, healthier and more environmentally friendly alternatives to existing methods for managing postharvest decays of fresh produce should be advocated. There is increasing consensus that utilization of biological control agents (BCAs), mainly fungi, represents a more sustainable and effective strategy for controlling postharvest losses compared to physical and chemical treatments. Secretion of antifungal compounds, parasitism, as well as competition for nutrients and space are the most common antagonistic mechanisms employed by these BCAs. This article provides an overview of (i) the methods currently used for management of postharvest diseases of fresh produce, highlighting their limitations, and (ii) the use of biocontrol agents as an alternative strategy for control of such diseases, with emphasis on fungal antagonists, their mode of action, and, more importantly, their advantages when compared to other methods commonly used. We therefore hypothesize that the use of fungal antagonists for prevention of postharvest loss of fresh produce is more effective compared to physical and chemical methods. Finally, particular attention is given to the gaps observed in establishing beneficial microbes as BCAs and factors that hamper their development, particularly in terms of shelf life, efficacy, commercialization, and legislation procedures.
Collapse
Affiliation(s)
- Phathutshedzo Ramudingana
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
| | - Ndivhuho Makhado
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
- National Health Laboratory Services, Dr George Mukhari Tertiary Laboratory, Pretoria 0204, South Africa
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Mapitsi Silvester Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
| |
Collapse
|
2
|
Baigorria CG, Cerioni L, Debes MA, Ledesma AE, Alastuey P, Tirado M, Volentini SI, Rapisarda VA. Antifungal Action of Metallic Nanoparticles Against Fungicide-Resistant Pathogens Causing Main Postharvest Lemon Diseases. J Fungi (Basel) 2024; 10:782. [PMID: 39590700 PMCID: PMC11595958 DOI: 10.3390/jof10110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Postharvest fungal diseases are the main cause of economic losses in lemon production. The continued use of synthetic fungicides to control the diseases favors the emergence of resistant strains, which encourages the search for alternatives. The aim of this study was to assess the efficacy of metallic nanoparticles (NPs) as antifungal agents against local isolates of Penicillium digitatum and Penicillium italicum, each of them in a fungicide-sensitive and -resistant version, and a Geotrichum citri-aurantii isolate. NPs of ZnO, CuO, and Ag were synthesized and characterized by spectroscopy and microscopy, presenting average sizes < 25 nm and spherical shapes. ZnO-NPs did not present antifungal activity at the assayed conditions, while the minimum fungicidal concentrations (MFCs) were 1000 and 10 µg mL-1 for CuO-NPs and Ag-NPs, respectively. The NPs' antimicrobial action included conidial membrane permeability and strong intracellular disorganization. Moreover, the Ag-NPs reduced green mold incidence on inoculated lemons when applied to the fruit. Taken together, Ag-NPs were effective in inhibiting both fungicide-sensitive and -resistant isolates of the main lemon postharvest pathogens, suggesting their potential use as an alternative approach.
Collapse
Affiliation(s)
- Carina G. Baigorria
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán 4000, Argentina
| | - Luciana Cerioni
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán 4000, Argentina
| | - Mario A. Debes
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán 4000, Argentina
- Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, UNT, San Miguel de Tucumán 4000, Argentina
| | - Ana E. Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET-UNSE, Santiago del Estero 4206, Argentina
| | - Patricio Alastuey
- Instituto de Física del Noroeste Argentino (INFINOA), CONICET-UNT, Facultad de Ciencias Exactas y Tecnología, FACET, UNT, San Miguel de Tucumán 4002, Argentina
| | - Mónica Tirado
- Instituto de Física del Noroeste Argentino (INFINOA), CONICET-UNT, Facultad de Ciencias Exactas y Tecnología, FACET, UNT, San Miguel de Tucumán 4002, Argentina
| | - Sabrina I. Volentini
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán 4000, Argentina
| | - Viviana A. Rapisarda
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán 4000, Argentina
| |
Collapse
|
3
|
Moura VS, Olandin LD, Mariano BS, Rodrigues J, Devite FT, Arantes ACC, Queiroga CL, Sartoratto A, de Azevedo FA, Bastianel M. Antifungal Activity of Citrus Essential Oil in Controlling Sour Rot in Tahiti Acid Lime Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3075. [PMID: 39519993 PMCID: PMC11548434 DOI: 10.3390/plants13213075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sour rot, caused by Geotrichum citri-aurantii, is a significant post-harvest disease in citrus, resulting in economic losses due to the lack of effective fungicides. This study investigates the antifungal activity of citrus essential oils in controlling sour rot in Tahiti acid lime fruits. Essential oils were extracted via hydrodistillation with chemical composition analyzed by CG-MS and tested in vitro and in vivo. In vitro assays evaluated mycelial growth inhibition at 2 to 32 µL mL-1 concentrations. In vivo trials involved preventive and curative treatments on artificially inoculated fruits stored at 25 °C ± 2, and the results showed that Pera IAC sweet orange oil, at 32 µL mL-1, reduced disease severity by 96% in curative treatments. In contrast, Late IAC 585 willowleaf mandarin oil demonstrated moderate inhibition (44%) at the highest concentration in vitro. The oils did not affect key fruit quality parameters such as juice yield and total soluble solids. These findings suggest that citrus essential oils could be natural alternatives to synthetic fungicides for post-harvest sour rot management, combining effectiveness with maintaining fruit quality.
Collapse
Affiliation(s)
- Vanessa Santos Moura
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Lara Dias Olandin
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Beatriz Saraiva Mariano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Josiane Rodrigues
- Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras 13600-970, SP, Brazil;
| | - Fernando Trevizan Devite
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Ana Carolina Costa Arantes
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Carmen Lucia Queiroga
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13148-218, SP, Brazil; (C.L.Q.); (A.S.)
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13148-218, SP, Brazil; (C.L.Q.); (A.S.)
| | - Fernando Alves de Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| | - Marinês Bastianel
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis 13492-442, SP, Brazil; (V.S.M.); (L.D.O.); (B.S.M.); (F.T.D.); (A.C.C.A.); (M.B.)
| |
Collapse
|
4
|
Song R, Wang X, Jiao L, Jiang H, Yuan S, Zhang L, Shi Z, Fan Z, Meng D. Epsilon-poly-l-lysine alleviates brown blotch disease of postharvest Agaricus bisporus mushrooms by directly inhibiting Pseudomonas tolaasii and inducing mushroom disease resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105759. [PMID: 38458662 DOI: 10.1016/j.pestbp.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 03/10/2024]
Abstract
The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.
Collapse
Affiliation(s)
- Rui Song
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhenchuan Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
5
|
Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chem 2023; 403:134419. [DOI: 10.1016/j.foodchem.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
|
6
|
Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Li Y, Wang M, Li Y, Hong B, Kang D, Ma Y, Wang J. Two novel antimicrobial peptides against vegetative cells, spores and biofilm of Bacillus cereus. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL. Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 2022; 9:890654. [PMID: 36081849 PMCID: PMC9447862 DOI: 10.3389/fmolb.2022.890654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides are small molecules, up to 10 kDa, present in all kingdoms of life, including in plants. Several studies report that these molecules have a broad spectrum of activity, including antibacterial, antifungal, antiviral, and insecticidal activity. Thus, they can be employed in agriculture as alternative tools for phytopathogen and pest control. However, the application of peptides in agriculture can present challenges, such as loss of activity due to degradation of these molecules, off-target effects, and others. In this context, nanotechnology can offer versatile structures, including metallic nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others, which might act both in protection and in release of AMPs. Several polymers and biomaterials can be employed for the development of nanostructures, such as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers, and others. This review addresses the versatility of NanoAMPs (Nanoparticles in association with antimicrobial peptides), and their potential applications in agribusiness, as an alternative for the control of phytopathogens in crops.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de MT, Cuiabá, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- *Correspondence: Octávio Luiz Franco,
| |
Collapse
|
9
|
Dimethyl Dicarbonate as a Food Additive Effectively Inhibits Geotrichum citri-aurantii of Citrus. Foods 2022; 11:foods11152328. [PMID: 35954094 PMCID: PMC9368502 DOI: 10.3390/foods11152328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl dicarbonate (DMDC), a food additive, can be added to a variety of foods as a preservative. This study aimed to evaluate the inhibitory effects of DMDC on Geotrichum citri-aurantii in vitro and in vivo, as well as the potential antifungal mechanism. In vitro experiments showed that 250 mg/L DMDC completely inhibited the growth of G. citri-aurantii and significantly inhibited spore germination by 96.33%. The relative conductivity and propidium iodide (PI) staining results showed that DMDC at 250 mg/L increased membrane permeability and damaged membrane integrity. Malondialdehyde (MDA) content and 2, 7-Dichlorodihydrofluorescein diacetate (DCHF-DA) staining determination indicated that DMDC resulted in intracellular reactive oxygen species (ROS) accumulation and lipid peroxidation. Scanning electron microscopy (SEM) analysis found that the mycelia were distorted and the surface collapsed after DMDC treatment. Morphological changes in mitochondria and the appearance of cavities were observed by transmission electron microscopy (TEM). In vivo, 500 mg/L DMDC and G. citri-aurantii were inoculated into the wounds of citrus. After 7 days of inoculation, DMDC significantly reduced the disease incidence and disease diameter of sour rot. The storage experiment showed that DMDC treatment did not affect the appearance and quality of fruits. In addition, we found that DMDC at 500 mg/L significantly increased the activity of citrus defense-related enzymes, including peroxidase (POD) and phenylalanine ammonia-lyase (PAL). Therefore, DMDC could be used as an effective method to control citrus sour rot.
Collapse
|
10
|
Aluminum sulfate inhibits green mold by inducing chitinase activity of Penicillium digitatum and enzyme activity of citrus fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Kumari C, Sharma M, Kumar V, Sharma R, Kumar V, Sharma P, Kumar P, Irfan M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineering (Basel) 2022; 9:bioengineering9040176. [PMID: 35447736 PMCID: PMC9028506 DOI: 10.3390/bioengineering9040176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.
Collapse
Affiliation(s)
- Chanchal Kumari
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Megha Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Parul Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
- Correspondence: (P.S.); (M.I.)
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (P.S.); (M.I.)
| |
Collapse
|
12
|
Exploring the Citrus Sour Rot pathogen: biochemical aspects, virulence factors, and strategies for disease management - a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Synthetic Antimicrobial Peptides for Controlling Fungi in Foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Lin S, Wang Y, Lu Q, Zhang B, Wu X. Combined transcriptome and metabolome analyses reveal the potential mechanism for the inhibition of Penicillium digitatum by X33 antimicrobial oligopeptide. BIORESOUR BIOPROCESS 2021; 8:120. [PMID: 38650267 PMCID: PMC10991954 DOI: 10.1186/s40643-021-00472-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Penicillium digitatum is the primary spoilage fungus that causes green mold during postharvest in citrus. To reduce economic losses, developing more efficient and less toxic natural antimicrobial agents is urgently required. We previously found that the X33 antimicrobial oligopeptide (X33 AMOP), produced by Streptomyces lavendulae X33, exhibited a sterilization effect on P. digitatum. In this study, the effects, and physiological mechanisms of X33 AMOP as an inhibitor of P. digitatum were investigated. The transcriptional and metabolome profiling of P. digitatum exposed to X33 AMOP revealed 3648 genes and 190 metabolites that were prominently changed. The omics analyses suggested that X33 AMOP mainly inhibited P. digitatum growth by affecting cell integrity, genetic information delivery, oxidative stress tolerance, and energy metabolism. These findings provide helpful information regarding the antimicrobial mechanism of X33 AMOP against P. digitatum at the molecular level and indicate that X33 AMOP is a potential candidate to control P. digitatum.
Collapse
Affiliation(s)
- Shuhua Lin
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuanxiu Wang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Qunlin Lu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China.
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China.
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China.
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China.
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China.
| |
Collapse
|
15
|
Lima PG, Freitas CDT, Oliveira JTA, Neto NAS, Amaral JL, Silva AFB, Sousa JS, Franco OL, Souza PFN. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Res Int 2021; 147:110582. [PMID: 34399551 DOI: 10.1016/j.foodres.2021.110582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Fungal contamination is among the main reasons for food spoilage, affecting food safety and the economy. Among fungi, Penicillium digitatum is a major agent of this problem. Here, the in vitro activity of eight synthetic antimicrobial peptides was assessed against P. digitatum, and their action mechanisms were evaluated. All peptides were able to inhibit fungal growth. Furthermore, atomic force and fluorescence microscopies revealed that all peptides targeted the fungal membrane leading to pore formation, loss of internal content, and death. The induction of high levels of reactive oxygen species (ROS) was also a mechanism employed by some peptides. Interestingly, only three peptides (PepGAT, PepKAA, and Mo-CBP3-PepI) effectively control P. digitatum colonization in orange fruits, at a concentration (50 µg mL-1) 20-fold lower than the commercial food preservative (sodium propionate). Altogether, PepGAT, PepKAA, and Mo-CBP3-PepI showed high biotechnological potential as new food preservatives to control food infection by P. digitatum.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Jeanlex S Sousa
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
16
|
Matrose NA, Obikeze K, Belay ZA, Caleb OJ. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Elsherbiny EA, Dawood DH, Safwat NA. Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104721. [PMID: 33357543 DOI: 10.1016/j.pestbp.2020.104721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 05/24/2023]
Abstract
Green mold, caused by Penicillium digitatum, is the most economically important postharvest disease of orange fruit worldwide. The aim of this study was to evaluate the effect of β-aminobutyric acid (BABA) treatment on the inhibition of P. digitatum both in orange fruit and in vitro as well as the possible mechanisms of action. BABA at 125 mM significantly inhibited mycelial growth, spore germination, and germ tube elongation of P. digitatum by 93.3, 90.3, and 90.5%, respectively. The relative electrical conductivity of mycelium was increased for a period of 0-36 h after treated with BABA at 125 mM. Furthermore, BABA caused a high level of malondialdehyde (MDA) in P. digitatum mycelia during four days of incubation. The ergosterol content in the plasma membrane of P. digitatum was significantly lower in BABA-treated mycelia. Also, protein and sugar leakage were increased with BABA treatment compared with that in the control. Besides, BABA caused a considerable reduction in the total lipid content of P. digitatum mycelia at 125 mM. Scanning electron microscopy (SEM) of P. digitatum treated with BABA at 125 mM showed shrunken, distorted, and collapsed mycelia. The application of BABA at 125 mM in orange fruit inoculated with P. digitatum suppressed disease incidence and disease severity by 74.6 and 77.3%, respectively, compared to untreated fruit. Moreover, the activity of defense-related enzymes, including peroxidase (POD), polyphenoloxidase (PPO), and phenylalanine ammonia-lyase (PAL) were significantly enhanced in the orange fruit treated with BABA at 125 mM.
Collapse
Affiliation(s)
- Elsherbiny A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Dawood H Dawood
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Nesreen A Safwat
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Bhatta UK. Alternative Management Approaches of Citrus Diseases Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). FRONTIERS IN PLANT SCIENCE 2021; 12:833328. [PMID: 35273621 PMCID: PMC8904086 DOI: 10.3389/fpls.2021.833328] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/31/2021] [Indexed: 05/09/2023]
Abstract
Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are among the most economically impactful post-harvest diseases of citrus fruit worldwide. Post-harvest citrus diseases are largely controlled with synthetic fungicides such as pyrimethanil, imazalil, fludioxonil, and thiabendazole. Due to their toxic effects, prolonged and excessive application of these fungicides is gradually restricted in favor of safe and more eco-friendly alternatives. This review comprehensively describes alternative methods for the control of P. digitatum and P. italicum: (a) antagonistic micro-organisms, (b) plant extracts and essential oils, (c) biofungicides, (d) chitosan and chitosan-based citrus coatings, (e) heat treatments, (f) ionizing and non-ionizing irradiations, (g) food additives, and (h) synthetic elicitors. Integrating multiple approaches such as the application of biocontrol agents with food additives or heat treatments have overcome some drawbacks to single treatments. In addition, integrating treatment approaches could produce an additive or synergistic effect on controlling both molds for a satisfactory level of disease reduction in post-harvest citrus. Further research is warranted on plant resistance and fruit-pathogen interactions to develop safer strategies for the sustainable control of P. digitatum and P. italicum in citrus.
Collapse
|
19
|
Li X, Feng G, Wang W, Yi L, Deng L, Zeng K. Effects of Peptide C 12-OOWW-NH 2 on Transcriptome and Cell Wall of the Postharvest Fungal Pathogen Penicillium digitatum. Front Microbiol 2020; 11:574882. [PMID: 33042086 PMCID: PMC7527529 DOI: 10.3389/fmicb.2020.574882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, the transcriptional profiling of Penicillium digitatum after C12O3TR treatment was analyzed by RNA-Seq technology. A total of 2562 and 667 genes in P. digitatum were differentially expressed after 2 and 12 h treatment, respectively. These genes were respectively mapped to 91 and 79 KEGG pathways. The expression patterns of differentially expressed genes (DEGs) at 2 and 12 h were similar, mainly were the metabolic processes in cell wall, cell membrane, genetic information and energy. Particularly, the main metabolic process which was affected by C12O3TR stress for 2 and 12 h was cell integrity, including cell wall and cell membrane. The changes of chitin in cell wall was observed by Calcofluor White (CFW) staining assay. The weaker blue fluorescence in the cell wall septa, the decrease of β-1, 3-glucan synthase activity and the increase of chitinase and AKP activity showed that C12O3TR could damage the cell wall integrity. In conclusion, these results suggested that C12O3TR could inhibit the growth of P. digitatum through various mechanisms at transcriptional level, and could influence the cell wall permeability and integrity.
Collapse
Affiliation(s)
- Xindan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Guirong Feng
- College of Food Science, Southwest University, Chongqing, China
| | - Wenjun Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Detecting Green Mold Pathogens on Lemons Using Hyperspectral Images. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyperspectral images in the spectral wavelength range of 500 nm to 650 nm are used to detect green mold pathogens, which are parasitic on the surface of lemons. The images reveal that the spectral range of 500 nm to 560 nm is appropriate for detecting the early stage of development of the pathogen in the lemon, because the spectral intensity is proportional to the infection degree. Within the range, it was found that the dominant spectral wavelengths of the fresh lemon and the green mold pathogen are 580 nm and 550 nm, respectively, with the 550 nm being the most sensitive in detecting the pathogen with spectral imaging. The spectral intensity ratio of the infected lemon to the fresh one in the spectral range of 500 nm to 560 nm increases with the increasing degree of the infection. Therefore, the ratio can be used to effectively estimate the degree of lemons infecting by the green mold pathogens. It also shows that the sudden decrease of the spectral intensity corresponding to the dominant spectral wavelength of the fresh lemon, together with the neighboring spectral wavelengths can be used to classify fresh and contaminated lemons. The spectral intensity ratio of discriminating the fresh lemon from the infected one is calculated as 1.15.
Collapse
|
21
|
Yang Y, OuYang Q, Li L, Shao X, Che J, Tao N. Inhibitory effects of glutaraldehyde on
Geotrichum citri‐aurantii
and its possible mechanism. J Appl Microbiol 2019; 127:1148-1156. [DOI: 10.1111/jam.14370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Yang
- School of Chemical Engineering Xiangtan University Xiangtan Hunan P.R. China
| | - Q. OuYang
- School of Chemical Engineering Xiangtan University Xiangtan Hunan P.R. China
| | - L. Li
- School of Chemical Engineering Xiangtan University Xiangtan Hunan P.R. China
| | - X. Shao
- Department of Food Science and Engineering Ningbo University Ningbo Zhejiang P.R. China
| | - J. Che
- School of Chemical Engineering Xiangtan University Xiangtan Hunan P.R. China
| | - N. Tao
- School of Chemical Engineering Xiangtan University Xiangtan Hunan P.R. China
| |
Collapse
|