1
|
N-acyl homoserine lactone molecules assisted quorum sensing: effects consequences and monitoring of bacteria talking in real life. Arch Microbiol 2021; 203:3739-3749. [PMID: 34002253 DOI: 10.1007/s00203-021-02381-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Bacteria utilize small signal molecules to monitor population densities. Bacteria arrange gene regulation in a method called Quorum Sensing (QS). The most widespread signalling molecules are N-Acyl Homoserine Lactones (AHLs/HSLs) for Gram-negative bacteria communities. QS plays significant role in the organizing of the bacterial gene that adapts to harsh environmental conditions for bacteria. It is involved in the arrangement of duties, such as biofilm formation occurrence, virulence activity of bacteria, production of antibiotics, plasmid conjugal transfer incident, pigmentation phenomenon and production of exopolysaccharide (EPS). QS obviously impacts on human health, agriculture and environment. AHL-related QS researches have been extensively studied and understood in depth for cell to cell intercommunication channel in Gram-negative bacteria. It is understood that AHL-based QS research has been extensively studied for cell-to-cell communication in Gram-negative bacteria; hence, a comprehensive study of AHLs, which are bacterial signal molecules, is required. The purpose of this review is to examine the effects of QS-mediated AHLs in many areas by looking at them from a different perspectives, such as clinic samples, food industry, aquatic life and wastewater treatment system.
Collapse
|
2
|
Yang QY, Zhang YT, Xiao JN, Liang YS, Ji P, Wang SJ, Wang Y, Chen Y. Age-Related Immunoreactivity Profiles to Diverse Mycobacterial Antigens in BCG-Vaccinated Chinese Population. Front Immunol 2021; 11:608220. [PMID: 33584683 PMCID: PMC7878369 DOI: 10.3389/fimmu.2020.608220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Long-term immunoreactivity to mycobacterial antigens in Bovis Calmette-Guérin (BCG)-vaccinated population is not well investigated. Herein, 361 volunteer healthy donors (HDs) with neonatal BCG vaccination from Shanghai region (China) were enrolled. They were subdivided into ESAT-6/CFP10- (E6C10-) and ESAT-6/CFP10+ (E6C10+) groups based on gamma-interferon release assays (IGRAs). Three mycobacterial antigens, including Rv0934, Rv3006, and Rv3841, were subjected to the determination of immunoreactivity by ELISPOT assay. The immunoreactivities to three mycobacterial antigens were firstly compared among TB patients (N=39), E6C10+ HDs (N=78, 21.61% of HDs) and E6C10- HDs (N=283, 78.39% of HDs). It was revealed that Rv3006 was dominant upon M.tb infection, while Rv3841 was likely to be more responsive upon latent TB infection. In E6C10- population, the immunoreactivity to Rv3841 maintained along with aging, whereas those to Rv3006 and Rv0934 attenuated in E6C10- HDs older than 45 years old. Our study implies the shift of dominant antigens at different infection statuses, providing the clues for the selection of mycobacterial antigens in vaccine development and precision revaccination in the future.
Collapse
Affiliation(s)
- Qing-Yuan Yang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Yu-Tong Zhang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Jia-Ni Xiao
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Yu-Shuo Liang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Ping Ji
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Shu-Jun Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Chen
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong Unviersity School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Shi W, Tong Z, Qiu Q, Yue N, Guo W, Zou F, Zhou D, Li J, Huang W, Qian H. Novel HLA-A2 restricted antigenic peptide derivatives with high affinity for the treatment of breast cancer expressing NY-ESO-1. Bioorg Chem 2020; 103:104138. [PMID: 32745760 DOI: 10.1016/j.bioorg.2020.104138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Tumor immunotherapy based on specific tumor antigen has become the focus for breast cancer, and research into cancer/testes antigens (CTA) is progressing. As an important member in the CTA, NY-ESO-1 plays a crucial role in the treatment and prognosis of breast cancer. In this study, we aimed to improve the binding ability to MHC by designing and synthesizing stable NY-ESO-1-derived peptides, based on NetMHC 4.0 webserver (http://www.cbs.dtu.dk/services/NetMHC/) and HLP webserver (http://crdd.osdd.net/raghava/hlp/pep_both.htm). Moreover, after modification of the lead compound, affinity of the peptides to human leukocyte antigen-A2 (HLA-A2) was determined by a flow cytometry and an inverted fluorescence microscope in T2 cells that show high expression of HLA-A2. The results demonstrated that the affinity of peptides II-4 and II-10 to HLA-A2 was significantly better when compared to others (II-Lead, II-1 ~ II-3, II-5 ~ II-9, II-11 ~ II-15). Further studies indicated that II-4 and II-10, especially II-4, significantly promoted the maturation of HLA-A2-positive human peripheral blood-derived dendritic cells (DCs) from morphology and surface markers, the activation of CD8 + T lymphocytes, and the type-specific killing effect on HLA-A2+/NY-ESO-1+ MDA-MB-231 cells. Molecular docking studies suggested a strong interaction between peptide II-4 and HLA-A2, thereby indicating that the II-4 is a promising candidate with antigenic potential in the field of immunotherapy that needs more studies.
Collapse
Affiliation(s)
- Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhenzhen Tong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qianqian Qiu
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng 224002, PR China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weiwei Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Daoguang Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jiuhui Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|