1
|
Wang L, Liu P, Wu Y, Pei H, Cao X. Inhibitory effect of Lonicera japonica flos on Streptococcus mutans biofilm and mechanism exploration through metabolomic and transcriptomic analyses. Front Microbiol 2024; 15:1435503. [PMID: 39027105 PMCID: PMC11256199 DOI: 10.3389/fmicb.2024.1435503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Streptococcus mutans was the primary pathogenic organism responsible for dental caries. Lonicera japonica flos (LJF) is a traditional herb in Asia and Europe and consumed as a tea beverage for thousands of years. Methods The inhibitory effect and mechanism of LJF on biofilm formation by S. mutans was investigated. The active extracts of LJF were validated for their inhibitory activity by examining changes in surface properties such as adherence, hydrophobicity, auto-aggregation abilities, and exopolysaccharides (EPS) production, including water-soluble glucan and water-insoluble glucan. Results and discussion LJF primarily inhibited biofilm formation through the reduction of EPS production, resulting in alterations in cell surface characteristics and growth retardation in biofilm formation cycles. Integrated transcriptomic and untargeted metabolomics analyses revealed that EPS production was modulated through two-component systems (TCS), quorum sensing (QS), and phosphotransferase system (PTS) pathways under LJF stress conditions. The sensing histidine kinase VicK was identified as an important target protein, as LJF caused its dysregulated expression and blocked the sensing of autoinducer II (AI-2). This led to the inhibition of response regulator transcriptional factors, down-regulated glycosyltransferase (Gtf) activity, and decreased production of water-insoluble glucans (WIG) and water-soluble glucans (WSG). This is the first exploration of the inhibitory effect and mechanism of LJF on S. mutans, providing a theoretical basis for the application of LJF in functional food, oral health care, and related areas.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Cao
- Beijing Technology and Business University, Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
2
|
Sarangi A, Das BS, Sahoo A, Jena B, Patnaik G, Giri S, Chattopadhyay D, Bhattacharya D. Deciphering the Antibiofilm, Antibacterial, and Antioxidant Potential of Essential Oil from Indian Garlic and its Phytocompounds Against Foodborne Pathogens. Curr Microbiol 2024; 81:245. [PMID: 38940852 DOI: 10.1007/s00284-024-03753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswajit Jena
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Gautam Patnaik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sidhartha Giri
- ICMR-Regional Medical Research Centre (RMRC), Bhubaneswar, Odisha, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India.
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
3
|
Spangler JR, Cooper DN, Malanoski AP, Walper SA. Promoter Identification and Optimization for the Response of Lactobacillus plantarum WCFS1 to the Gram-Negative Pathogen-Associated Molecule N-3-Oxododecanoyl Homoserine Lactone. ACS Biomater Sci Eng 2023; 9:5111-5122. [PMID: 35708239 DOI: 10.1021/acsbiomaterials.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species Lactobacillus plantarum WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of L. plantarum cultures exposed to N-3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.
Collapse
Affiliation(s)
- Joseph R Spangler
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Denver N Cooper
- Spelman College, 350 Spelman Ln SW, Atlanta, Georgia 30314, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Scott A Walper
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Batista S, Fernandez-Pittol M, Nicolás LS, Martínez D, Rubio M, Garrigo M, Vila J, Tudó G, González-Martin J. In Vitro Effect of Three-Antibiotic Combinations plus Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium and Mycobacterium intracellulare Clinical Isolates. Antibiotics (Basel) 2023; 12:1409. [PMID: 37760706 PMCID: PMC10526108 DOI: 10.3390/antibiotics12091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with chronic pulmonary diseases infected by Mycobacterium avium complex (MAC) often develop complications and suffer from treatment failure due to biofilm formation. There is a lack of correlation between in vitro susceptibility tests and the treatment of clinical isolates producing biofilm. We performed susceptibility tests of 10 different three-drug combinations, including two recommended in the guidelines, in biofilm forms of eight MAC clinical isolates. Biofilm developed in the eight isolates following incubation of the inoculum for 3 weeks. Then, the biofilm was treated with three-drug combinations with and without the addition of potential antibiofilm agents (PAAs). Biofilm bactericidal concentrations (BBCs) were determined using the Vizion lector system. All selected drug combinations showed synergistic activity, reducing BBC values compared to those treated with single drugs, but BBC values remained high enough to treat patients. However, with the addition of PAAs, the BBCs steadily decreased, achieving similar values to the combinations in planktonic forms and showing synergistic activity in all the combinations and in both species. In conclusion, three-drug combinations with PAAs showed synergistic activity in biofilm forms of MAC isolates. Our results suggest the need for clinical studies introducing PAAs combined with antibiotics for the treatment of patients with pulmonary diseases infected by MAC.
Collapse
Affiliation(s)
- Sara Batista
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Mariana Fernandez-Pittol
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Lorena San Nicolás
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Diego Martínez
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Marc Rubio
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain; (M.R.); (M.G.)
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí, 89, 08026 Barcelona, Spain
| | - Montserrat Garrigo
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain; (M.R.); (M.G.)
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí, 89, 08026 Barcelona, Spain
| | - Jordi Vila
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
- CIBER of Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Griselda Tudó
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Julian González-Martin
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
- CIBER of Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Dop RA, Neill DR, Hasell T. Sulfur-Polymer Nanoparticles: Preparation and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20822-20832. [PMID: 37074085 PMCID: PMC10165599 DOI: 10.1021/acsami.3c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High sulfur content polymers prepared by inverse vulcanization have many reported potential applications, including as novel antimicrobial materials. High sulfur content polymers usually have limited water-solubility and dispersibility due to their hydrophobic nature, which could limit the development of their applications. Herein, we report the formulation of high sulfur content polymeric nanoparticles by a nanoprecipitation and emulsion-based method. High sulfur content polymeric nanoparticles were found to have an inhibitory effect against important bacterial pathogens, including Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. Salt-stable particles were formulated with the addition of a surfactant, which did not inhibit the antibacterial activity of the polymeric particles. Furthermore, the polymeric nanoparticles were found to inhibit S. aureus biofilm formation and exhibited low cytotoxicity against mammalian liver cells. Interaction of the polymeric particles with cellular thiols could be a potential mechanism of action against bacterial cells, as demonstrated by reaction with cysteine as a model thiol. The findings presented demonstrate methods of preparing aqueous dispersions of high sulfur content polymeric nanoparticles that could have useful biological applications.
Collapse
Affiliation(s)
- Romy A Dop
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
6
|
Li WR, Zeng TH, Zhang ZQ, Shi QS, Xie XB. Geraniol attenuates virulence factors by inhibiting quorum sensing of Pseudomonas aeruginosa. Front Microbiol 2023; 14:1190619. [PMID: 37180245 PMCID: PMC10172488 DOI: 10.3389/fmicb.2023.1190619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause severe respiratory tract infections. Geraniol, a chemical component of essential oils, has antimicrobial and anti-inflammatory activities, along with low toxicity. However, the effect and mechanism of geraniol against P. aeruginosa virulence factors are rarely studied. In this study, we investigated the quorum sensing (QS) inhibitory effects and mechanisms of geraniol against P. aeruginosa PAO1, using physiological and biochemical techniques, quantitative reverse transcription polymerase chain reaction, and transcriptomics. Geraniol slightly affected P. aeruginosa PAO1 growth, prolonged the lag phase, and delayed growth periods in a concentration-dependent manner. Geraniol inhibited three QS systems of P. aeruginosa, las, rhl, and pqs by suppressing the expression level of their key genes, including the three signal synthetase encoding genes of lasI, rhlI, and pqsABCDEH, and the corresponding signal receptor encoding genes of lasR, rhlR, and pqsR. Geraniol also suppressed certain virulence genes regulated by these three QS systems, including rhlABC, lasAB, lecAB, phzABMS, and pelABG, resulting in the attenuation of the related virulence factors, rhamnolipids, exoprotease LasA, elastase, lectin, pyocyanin, and biofilm. In conclusion, geraniol can suppress the virulence factors of P. aeruginosa PAO1 by inhibiting the three QS systems of las, rhl, and pqs. This study is significant for improving the treatment of bacterial infections caused by P. aeruginosa.
Collapse
|
7
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Chauhan SM, Pogliano J, Palsson BO. Advanced transcriptomic analysis reveals the role of efflux pumps and media composition in antibiotic responses of Pseudomonas aeruginosa. Nucleic Acids Res 2022; 50:9675-9688. [PMID: 36095122 PMCID: PMC9508857 DOI: 10.1093/nar/gkac743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and major cause of hospital-acquired infections. The virulence of P. aeruginosa is largely determined by its transcriptional regulatory network (TRN). We used 411 transcription profiles of P. aeruginosa from diverse growth conditions to construct a quantitative TRN by identifying independently modulated sets of genes (called iModulons) and their condition-specific activity levels. The current study focused on the use of iModulons to analyze the biofilm production and antibiotic resistance of P. aeruginosa. Our analysis revealed: (i) 116 iModulons, 81 of which show strong association with known regulators; (ii) novel roles of regulators in modulating antibiotics efflux pumps; (iii) substrate-efflux pump associations; (iv) differential iModulon activity in response to beta-lactam antibiotics in bacteriological and physiological media; (v) differential activation of 'Cell Division' iModulon resulting from exposure to different beta-lactam antibiotics and (vi) a role of the PprB iModulon in the stress-induced transition from planktonic to biofilm lifestyle. In light of these results, the construction of an iModulon-based TRN provides a transcriptional regulatory basis for key aspects of P. aeruginosa infection, such as antibiotic stress responses and biofilm formation. Taken together, our results offer a novel mechanistic understanding of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
9
|
Synthesis and Biological Activity of Unsymmetrical Monoterpenylhetaryl Disulfides. Molecules 2022; 27:molecules27165101. [PMID: 36014334 PMCID: PMC9416111 DOI: 10.3390/molecules27165101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48–88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73–95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity.
Collapse
|
10
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
11
|
Portell-Buj E, González-Criollo C, López-Gavín A, Fernández-Pittol M, Busquets MA, Estelrich J, Garrigó M, Rubio M, Tudó G, Gonzalez-Martin J. Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics (Basel) 2022; 11:antibiotics11050589. [PMID: 35625233 PMCID: PMC9137467 DOI: 10.3390/antibiotics11050589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause lung infections in patients with underlying pulmonary diseases (PD). The Mycobacteriumavium-intracellulare complex (MAC) is the most frequently involved NTM. The MAC-PD treatment is based on the administration of several antibiotics for long periods of time. Nonetheless, treatment outcomes remain very poor. Among the factors involved is the ability of MAC isolates to form biofilm. The aim of the study was to assess the in vitro activity of different antibiotics and potential antibiofilm agents (PAAs) against MAC biofilm. Four antibiotics and six PAAs, alone and/or in combination, were tested against planktonic forms of 11 MAC clinical isolates. Biofilm was produced after 4 weeks of incubation and analyzed with the crystal violet assay. The antibiotics and PAAs were tested by measuring the absorbance (minimum biofilm inhibition concentrations, MBICs) and by performing subcultures (minimum biofilm eradication concentrations, MBECs). The clarithromycin/amikacin and clarithromycin/ethambutol combinations were synergistic, decreasing the MBECs values compared to the individual antibiotics. The amikacin/moxifloxacin combination showed indifference. The MBIC values decreased significantly when PAAs were added to the antibiotic combinations. These results suggest that antibiotic combinations should be further studied to establish their antibiofilm activity. Moreover, PAAs could act against the biofilm matrix, facilitating the activity of antibiotics.
Collapse
Affiliation(s)
- Elena Portell-Buj
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Cecibel González-Criollo
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- Unidad de Investigación en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Alexandre López-Gavín
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Mariana Fernández-Pittol
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Maria Antònia Busquets
- Department de Farmàcia, Tecnologia Farmacèutica i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.A.B.); (J.E.)
- Institut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Joan Estelrich
- Department de Farmàcia, Tecnologia Farmacèutica i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.A.B.); (J.E.)
- Institut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Montserrat Garrigó
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain;
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí 77, 08041 Barcelona, Spain;
| | - Marc Rubio
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí 77, 08041 Barcelona, Spain;
| | - Griselda Tudó
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Julian Gonzalez-Martin
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
- CIBER of Infectiuos Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Li Y, Liu Y, Yao B, Narasimalu S, Dong Z. Rapid preparation and antimicrobial activity of polyurea coatings with RE-Doped nano-ZnO. Microb Biotechnol 2022; 15:548-560. [PMID: 34676986 PMCID: PMC8867993 DOI: 10.1111/1751-7915.13891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/22/2021] [Accepted: 07/02/2021] [Indexed: 12/04/2022] Open
Abstract
The recent COVID-19 virus has led to a rising interest in antimicrobial and antiviral coatings for frequently touched surfaces in public and healthcare settings. Such coatings may have the ability to kill a variety of microorganisms and bio-structures and reduce the risk of virus transmission. This paper proposes an extremely rapid method to introduce rare-earth doping nano-ZnO in polyamines for the preparation of the anti-microbial polyurea coatings. The nano-ZnO is prepared by wet chemical method, and the RE-doped nano-ZnO was obtained by mixing nano ZnO and RE-dopants with an appropriate amount of nitric acid. This rapidly fabricated polyurea coating can effectively reduce bacteria from enriching on the surface. Comparing with pure nano-ZnO group, all the polyurea coatings with four different rare-earth elements (La, Ce, Pr and Gd) doped nano-ZnO. The La-doped nano-ZnO formula group indicates the highest bactericidal rate over 85% to Escherichia coli (E. coli) and Pseudomonas aeruginosa (Pseudomonas). Followed by Ce/ZnO, the bactericidal rate may still remain as high as 83% at room temperature after 25-min UV-exposure. It is believed that the RE-doping process may greatly improve the photocatalytic response to UV light as well as environmental temperature due to its thermal catalytic enhancement. Through the surface characterizations and bioassays, the coatings have a durably high bactericidal rate even after repeated usage. As polyurea coating itself has high mechanical strength and adhesive force with most substrate materials without peel-off found, this rapid preparation method will also provide good prospects in practical applications.
Collapse
Affiliation(s)
- Yuanzhe Li
- School of Materials Science & EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Yang Liu
- School of Materials Science & EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of Mechanical Engineering & Key Laboratory of Materials Design and Preparation Technology of Hunan ProvinceXiangtan UniversityXiangtan411105China
| | - Bingqing Yao
- School of Materials Science & EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Srikanth Narasimalu
- Energy Research Institute @ NTU (ERI@N)CleanTech OneSingapore637141Singapore
| | - ZhiLi Dong
- School of Materials Science & EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
13
|
Visan DC, Oprea E, Radulescu V, Voiculescu I, Biris IA, Cotar AI, Saviuc C, Chifiriuc MC, Marinas IC. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals (Basel) 2021; 14:1159. [PMID: 34832941 PMCID: PMC8617773 DOI: 10.3390/ph14111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to establish the essential oil (EO) composition from young shoots of Picea abies, Larix decidua, Pseudotsuga menziesii, and Pinus nigra harvested from Romania and evaluate their antimicrobial and anti-virulence activity, as well as potential synergies with currently used antibiotics. The samples' EO average content varied between 0.62% and 1.02% (mL/100 g plant). The mono- and sesquiterpene hydrocarbons were dominant in the composition of the studied EOs. The antimicrobial activity revealed that the minimum inhibitory concentration (MIC) values for the tested EOs and some pure compounds known for their antimicrobial activity ranged from 6.25 to 100 µL/mL. The most intensive antimicrobial effect was obtained for the Pinus nigra EO, which exhibited the best synergistic effect with some antibiotics against Staphylococcus aureus strains (i.e., oxacillin, tetracycline, erythromycin and gentamycin). The subinhibitory concentrations (sMIC) of the coniferous EOs inhibited the expression of soluble virulence factors (DN-ase, lipase, lecithinase, hemolysins, caseinase and siderophore-like), their efficiency being similar to that of the tested pure compounds, and inhibited the rhl gene expression in Pseudomonas aeruginosa, suggesting their virulence-arresting drug potential.
Collapse
Affiliation(s)
- Diana-Carolina Visan
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, 020956 Bucharest, Romania; (D.-C.V.); (V.R.)
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Valeria Radulescu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, 020956 Bucharest, Romania; (D.-C.V.); (V.R.)
| | - Ion Voiculescu
- “Marin Drăcea” National Institute for Forestry Research and Development, 128 Eroilor, 077190 Voluntari, Romania; (I.V.); (I.-A.B.)
| | - Iovu-Adrian Biris
- “Marin Drăcea” National Institute for Forestry Research and Development, 128 Eroilor, 077190 Voluntari, Romania; (I.V.); (I.-A.B.)
- Faculty of Agriculture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti, 011464 Bucharest, Romania
| | - Ani Ioana Cotar
- Cantacuzino National Medico-Military Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania;
| | - Crina Saviuc
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 050657 Bucharest, Romania; (C.S.); (M.C.C.); (I.C.M.)
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| |
Collapse
|
14
|
Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5103626. [PMID: 34745287 PMCID: PMC8570849 DOI: 10.1155/2021/5103626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Garlic is widely accepted as a functional food and an excellent source of pharmacologically active ingredients. Diallyl disulfide (DADS), a major bioactive component of garlic, has several beneficial biological functions, including anti-inflammatory, antioxidant, antimicrobial, cardiovascular protective, neuroprotective, and anticancer activities. This review systematically evaluated the biological functions of DADS and discussed the underlying molecular mechanisms of these functions. We hope that this review provides guidance and insight into the current literature and enables future research and the development of DADS for intervention and treatment of multiple diseases.
Collapse
|
15
|
Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2021; 10:1044. [PMID: 34572626 PMCID: PMC8472480 DOI: 10.3390/antibiotics10091044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - N. A. Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
16
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
17
|
Rathinam P, Murari BM, Viswanathan P. Biofilm inhibition and antifouling evaluation of sol-gel coated silicone implants with prolonged release of eugenol against Pseudomonas aeruginosa. BIOFOULING 2021; 37:521-537. [PMID: 34139901 DOI: 10.1080/08927014.2021.1933960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
The incidence of biofilm-linked catheter-associated urinary tract infections (CAUTIs) is increasing across the world. However, there is no clinical evidence to support the modifications of biomaterials, such as antimicrobial agent-coated catheters, that are known to reduce the risk of bacterial colonization and resistance development. The present study developed and tested silicone segments coated with an antivirulence agent, eugenol. The parameters for sol-gel preparation and coating were tailored to achieve a prolonged release of eugenol (for >35 days) at predefined antivirulence doses from dip-coated thin films. The eugenol-coated segments could prevent biofilm formation by Pseudomonas aeruginosa PAO1 as well as bacterial adhesion. Significant repression in the expression of virulence and biofilm-associated genes were recorded, confirming the antivirulence and biofilm inhibition properties of silicone segments coated with eugenol. The drug release profiles, efficacy analysis, neutrophil-response studies, and in vitro toxicity profiling further supported the contention that the activity of the eugenol-coated sections was effective and safe.
Collapse
Affiliation(s)
- Prasanth Rathinam
- Medical Biotechnology Laboratory, Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala, India
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Bhasker Mohan Murari
- Sol-Gel-Biosensor Lab, Centre for Bio-Medical Research, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
18
|
Ahmed B, Syed A, Ali K, Elgorban AM, Khan A, Lee J, Al-Shwaiman HA. Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications. RSC Adv 2021; 11:9880-9893. [PMID: 35423492 PMCID: PMC8695504 DOI: 10.1039/d1ra00220a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Green synthesized nanoparticles (NPs) have attracted enormous attention for their clinical and non-clinical applications. A natural polyphenol, gallo-tannin (GT) was used to reduce and cap the Fe2O3-NPs. GT-Fe2O3-NPs were synthesized following co-precipitation of FeCl3 and FeSO4·7H2O with GT. Fe2O3-NPs absorbed light at 380 nm. Physicochemically, Fe2O3-NPs were spherical with slight aggregation and average diameter of 12.85 nm. X-ray diffraction confirmed crystallinity and EDX revealed the elemental percentage of iron and oxygen as 21.7% and 42.11%, respectively. FT-IR data confirmed the adsorption of gallo-tannin functional groups. Multiple drug-resistant (MDR) Escherichia coli (ESβL), Pseudomonas aeruginosa (ESβL), and Staphylococcus aureus were found susceptible to 500-1000 μg GT-Fe2O3-NPs per ml. In synergy, Fe2O3-NPs enhanced the efficiency of some antibiotics. GT-Fe2O3 NPs showed significant (P ≤ 0.05) inhibition of growth and biofilm against MDR E. coli, P. aeruginosa, and S. aureus causing morphological and biofilm destruction. Violacein production (quorum sensing mediated) by C. violaceum was inhibited by GT-Fe2O3-NPs in a concentration-dependent manner with a maximum decrease of 3.1-fold. A decrease of 11-fold and 2.32-fold in fungal mycelial growth and human breast cancer (MCF-7) cell viability, respectively was evident. This study suggests a plausible role of gallo-tannin capped Fe2O3-NPs as an alternative antibacterial, antiquorum sensing, antibiofilm, antifungal, and anti-proliferative agent.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Khursheed Ali
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Afroz Khan
- Department of Physics, Faculty of Science, Aligarh Muslim University Aligarh 202002 India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
19
|
Antimicrobial Effect and the Mechanism of Diallyl Trisulfide against Campylobacter jejuni. Antibiotics (Basel) 2021; 10:antibiotics10030246. [PMID: 33801353 PMCID: PMC7999961 DOI: 10.3390/antibiotics10030246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen causing campylobacteriosis. It can infect humans through the consumption of contaminated chicken products or via the direct handling of animals. Diallyl trisulfide (DATS) is a trisulfide compound from garlic extracts that has a potential antimicrobial effect on foodborne pathogens. This study investigated the antimicrobial activity of DATS on C. jejuni by evaluating the minimal inhibitory concentrations (MICs) of C. jejuni 81-168, and fourteen C. jejuni isolates from chicken carcasses. Thirteen of 14 C. jejuni isolates and 81-176 had MICs ≤ 32 μg/mL, while one isolate had MIC of 64 μg/mL. Scanning electron microscopy (SEM) analysis showed the disruption and shrink of C. jejuni bacterial cell membrane after the DATS treatment. A time-killing analysis further showed that DATS had a dose-dependent in vitro antimicrobial effect on C. jejuni during the 24 h treatment period. In addition, DATS also showed an antimicrobial effect in chicken through the decrease of C. jejuni colony count by 1.5 log CFU/g (cloacal sample) during the seven-day DATS treatment period. The transcriptional analysis of C. jejuni with 16 μg/mL (0.5× MIC) showed 210 differentially expression genes (DEGs), which were mainly related to the metabolism, bacterial membrane transporter system and the secretion system. Fourteen ABC transporter-related genes responsible for bacterial cell homeostasis and oxidative stress were downregulated, indicating that DATS could decrease the bacterial ability to against environmental stress. We further constructed five ABC transporter deletion mutants according to the RNA-seq analysis, and all five mutants proved less tolerant to the DATS treatment compared to the wild type by MIC test. This study elucidated the antimicrobial activity of DATS on C. jejuni and suggested that DATS could be used as a potential antimicrobial compound in the feed and food industry.
Collapse
|
20
|
Li WR, Zeng TH, Yao JW, Zhu LP, Zhang ZQ, Xie XB, Shi QS. Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thioether group. Microb Biotechnol 2020; 14:677-691. [PMID: 33377615 PMCID: PMC7936293 DOI: 10.1111/1751-7915.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
Diallyl sulfide (DAS) and diallyl disulfide (DADS), two constituents of garlic, can inhibit quorum sensing (QS) systems of Pseudomonas aeruginosa. However, the differences in the mechanism of QS inhibition between DAS and DADS, and the functional chemical groups of these sulfides that contribute in QS inhibition have not been elucidated yet. We assumed that the sulfide group might play a key role in QS inhibition. To prove this hypothesis and to clarify these unsolved problems, in this study, we synthesized diallyl ether (DAE), and compared and investigated the effects of DAS and DAE on the growth and production of virulence factors, including Pseudomonas quinolone signal (PQS), elastase and pyocyanin, of P. aeruginosa PAO1. Transcriptome analysis and qRT‐PCR were used to compare and analyse the differentially expressed genes between the different treatment groups (DAS, DAE and control). The results indicated that DAS did not affect the growth dynamics of P. aeruginosa PAO1; however, DAS inhibited transcription of most of the QS system genes, including lasR, rhlI/rhlR and pqsABCDE/pqsR; thus, biosynthesis of the signal molecules C4‐HSL (encoded by rhlI) and PQS (encoded by pqsABCDE) was inhibited. Furthermore, DAS inhibited the transcription of virulence genes regulated by the QS systems, including rhlABC, lasA, lasB, lecA and phzAB, phzDEFG, phzM and phzS that encode for rhamnolipid, exoprotease, elastase, lectin and pyocyanin biosynthesis respectively. DAS also enhanced the expression of the key genes involved in the biosynthesis of three B vitamins: folate, thiamine and riboflavin. In conclusion, DAS suppressed the production of some virulence factors toxic to the host and enhanced the production of some nutrition factors beneficial to the host. These actions of DAS may be due to its thioether group. These findings would be significant for development of an effective drug to control the virulence and pathogenesis of the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Wen-Ru Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tao-Hua Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun-Wei Yao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Ping Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhi-Qing Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiao-Bao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
21
|
Alva PP, Suresh S, Nanjappa DP, James JP, Kaverikana R, Chakraborty A, Sarojini BK, Premanath R. Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sci 2020; 267:118878. [PMID: 33358909 DOI: 10.1016/j.lfs.2020.118878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The study aimed at isolating and identifying potential anti-quorum sensing (QS) compounds from Cinnamomum verum leaves against Pseudomonas aeruginosa. METHODOLOGY Isolation of anti-QS compounds from C. verum leaf ethanol extract was carried out by column chromatography. The bioactive fraction was analysed by UV, IR, and GCMS spectroscopy. Various virulence assays were performed to assess the QS quenching ability of the purified compounds. In vivo toxicity of the purified compounds was examined in zebrafish model. The expression of the virulence genes was evaluated by qPCR analysis and in silico assessment was accomplished to check the binding ability of the compounds with the autoinducer molecule. KEY FINDINGS The QS inhibitors isolated and identified showed a remarkable ability in reducing the production of elastase, pyocyanin, swarming motility and biofilm formation in P. aeruginosa. In the presence of the characterized compounds, the expression of virulence genes of P. aeruginosa was significantly reduced. Toxicity studies in zebrafish model indicated no effects on development and organogenesis at a concentration below 100 mg/l. Further, in silico analysis demonstrated the binding efficiency of the anti-QS compounds to AHL molecules, thus proving the QS quenching ability of the isolated compounds. SIGNIFICANCE To the best of our knowledge this is the first report of isolation of anti-QS compounds from C. verum leaves against P. aeruginosa. The identified compounds qualify as potential QS antagonists. Further studies on these compounds can pave way for an effective and attractive anti-pathogenic therapy, to overcome the emergence of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Prathiksha Prabhakara Alva
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Sarika Suresh
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Jainey Puthenveetil James
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Rajesh Kaverikana
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anirban Chakraborty
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Balladka K Sarojini
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | - Ramya Premanath
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
22
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 2020; 10:315. [PMID: 32596100 DOI: 10.1007/s13205-020-02286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sa lmonella typhimurium (S. typhimurium) represents an important global public health problem and has the ability to survive under desiccation conditions in foods and food processing facilities for years. The aim of this study was to investigate the effects of Allium sativum (A. sativum) and Cuminum cyminum (C. cyminum) essential oils (EOs) against planktonic growth, biofilm formation and quorum sensing (QS) of S. Typhimurium isolates, the strong biofilm producers. The major components of EOs were determined by gas chromatography-mass spectrometry (GC-MS). Biofilm formation of S. Typhimurium isolates was measured by crystal violet staining. Then, the effects of the EOs on the planktonic cell growth (using determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)), measurement of the synergistic effects of EOs (using checkerboard method), biofilm formation (using microtiter-plate test and scanning electron microscope (SEM)), and expression of QS and cellulose synthesis genes (using quantitative real-time PCR) were assessed. Finally, tetrazolium-based colorimetric (MTT) assay was used to examine EOs cytotoxicity on the Vero cell line. GC-MS analysis showed that terpineol, carene and pinene in C. cyminum EO and sulfur compounds in A. sativum EO were the major components of the plant extract. The Geometric mean of MIC values of the A. sativum and C. cyminum were 0.66 and 2.62 μL mL-1, respectively. The geometric means of the fractional inhibitory concentration index (FICi) for both EOs were calculated as 1.05. The qPCR results showed that MIC/2 concentrations of both EOs significantly down-regulated of QS (sdiA and luxS) and cellulose synthesis (csgD and adrA) genes. Scanning electron microscopy showed the EOs reduced the amount of S. Typhimurium mature biofilm. In general, we showed that C. cyminum and A. sativum EOs can be considered as the potential agents against planktonic and biofilm form of S. Typhimurium without any concern of cytotoxic effect at 4 MIC concentrations on the eukaryotic Vero cells.
Collapse
|
24
|
Liu L, Li JH, Zi SF, Liu FR, Deng C, Ao X, Zhang P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 103:6195-6204. [PMID: 31129741 DOI: 10.1007/s00253-019-09905-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa biofilm lifestyle exhibits multidrug resistance in chronic bacterial infections. Alternative antimicrobial compounds or combination drug therapies must be urgently developed. In this work, the antibiofilm effect of Ag nanoparticle (AgNP) combined with the quorum sensing inhibitor (QSI) 4-nitropyridine N-oxide (4NPO) on P. aeruginosa biofilms was investigated. The biofilm biomass of P. aeruginosa was considerably reduced by 1.56-50 mg/L AgNP. However, 4NPO enhanced the ability of AgNP to inhibit P. aeruginosa biofilm formation (P < 0.05). The combination of AgNP with 4NPO could continuously inhibit biofilm development after 12 h, and 50 mg/L AgNP combined with 6.25 mg/L 4NPO thoroughly suppressed biofilm growth. The expression levels of QS genes and exopolysaccharide genes of biofilm treated with the combination of AgNP with 4NPO (AgNP-4NPO combination) were lower than those treated with AgNP alone (P < 0.05). Additional extracellular proteins and polysaccharides were determined in the samples treated with AgNP-4NPO combination. Based on proteomic analysis, this result was attributed to cell rupture caused by antimicrobial agents and intracellular materials released. The combination of the two antimicrobial agents could weaken the swimming ability of bacterial cells by damaging bacterial flagella and blocking rhlA gene expression. Thus, AgNP combined with QSI showed stronger antibiofilm ability than AgNP alone. These results may contribute to the development of antimicrobial agents.
Collapse
Affiliation(s)
- Lei Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Jing-Hui Li
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Shuang-Feng Zi
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Fu-Rong Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Chao Deng
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Xue Ao
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|