1
|
Xu XH, Cai JR, Fan HF, Shi TT, Yang DY, Huang L, Zhang DW, Lu G. Analysis of the Risk Factors for Plastic Bronchitis in Children with Severe Adenovirus Pneumonia: A Retrospective Study. Infect Drug Resist 2024; 17:1011-1019. [PMID: 38505250 PMCID: PMC10948331 DOI: 10.2147/idr.s452347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose Plastic bronchitis (PB), a rare complication of respiratory infection characterized by the formation of casts in the tracheobronchial tree, can lead to airway obstruction and severe condition. Adenovirus is one of the common pathogens of PB caused by infection. This study aimed to evaluate the clinical features and risk factors for PB in children with severe adenovirus pneumonia. Methods A retrospective study of children with severe adenovirus pneumonia with bronchoscopy results at Guangzhou Women and Children's Hospital between January 2018 and January 2020 was performed. Based on bronchoscopy, we divided children with severe adenovirus pneumonia into two groups: PB and non-PB. Binary logistic regression analysis was used to identify independent risk factors for PB in patients with severe adenovirus pneumonia after univariate analysis. Results Our study examined 156 patients with severe adenovirus pneumonia with bronchoscopy results in hospital. Among them, 18 developed PB and 138 did not. On multivariate analysis, the independent risk factors of PB in children with severe adenovirus pneumonia were history of allergies (OR 10.147, 95% CI 1.727-59.612; P=0.010), diminished breath sounds (OR 12.856, 95% CI 3.259-50.713; P=0.001), and increased proportion of neutrophils (>70%; OR 8.074, 95% CI 1.991-32.735; P=0.003). Conclusion Children with severe adenovirus pneumonia with a history of allergies, diminished breath sounds, and increased the proportion of neutrophils >70% may show higher risk of PB.
Collapse
Affiliation(s)
- Xue-hua Xu
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jie-rong Cai
- Department of Pediatrics, Guangzhou Panyu District Central Hospital, Guangdong, Guangdong, People’s Republic of China
| | - Hui-feng Fan
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ting-ting Shi
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Di-yuan Yang
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li Huang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Dong-wei Zhang
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Gen Lu
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Hou Y, Wang Y, Chen J, Chen C. Dual Roles of Tumor Necrosis Factor Superfamily 14 in Antiviral Immunity. Viral Immunol 2022; 35:579-585. [PMID: 36342780 DOI: 10.1089/vim.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) is an interesting costimulatory molecule associated with T lymphocyte activation, and it mainly exerts its biological effects by binding to its receptors herpesvirus invasion mediator (HVEM) and lymphotoxin-β receptor. Research shows that TNFSF14 plays a critical regulatory role in immune responses to viral infection, but its role is different in different diseases. TNFSF14 can be a cytokine neutralization target during novel coronavirus infection, and anti-TNFSF14 monoclonal antibody treatment can reduce the risk of respiratory failure and mortality. When the host is infected with adenovirus, TNFSF14 can be used as an inflammatory biomarker to indicate whether there was an adenovirus infection in the host and the degree of disease caused by viral infection. When hosts suffer influenza virus infection, the TNFSF14-HVEM signaling pathway can stimulate the maturation and proliferation of memory CD8+ T cells, which helps the host immune system stimulate a second immune response against respiratory virus infection. TNFSF14 can act as an immune adjuvant and enhance the immunogenicity of the human papillomavirus (HPV) DNA vaccine when the host is infected with HPV. During hepatitis virus infection, TNFSF14 acts as a proinflammatory factor, participates in inflammation and causes tissue damage. In conclusion, TNFSF14 plays different and significant roles in diverse viral infections. This article reviews the current research on TNFSF14 in antiviral immunity.
Collapse
Affiliation(s)
- Yachao Hou
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou City, China
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yanan Wang
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou City, China
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Changguo Chen
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou City, China
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, Beijing, P.R. China
- Department of Clinical Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Han K, Zhao D, Liu Q, Liu Y, Huang X, Yang J, Zhang L, Li Y. Transcriptome analysis reveals new insight of duck Tembusu virus (DTMUV)-infected DF-1 cells. Res Vet Sci 2021; 137:150-158. [PMID: 33975194 DOI: 10.1016/j.rvsc.2021.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused huge economic losses to the duck industry in China since 2010. Moreover, the infection has spread rapidly, resulted in a potential public health concern. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we used RNA-Seq to detect the gene changes in DF-1 cells infected and mock-infected with DTMUV. A total of 663 differentially-expressed genes (DEGs) were identified in DTMUV-infected compared with mock-infected DF-1 cells at 24 h post-infection (hpi), among which 590 were up regulated and 73 were down regulated. Gene Ontology analysis indicated that the DEGs were mainly involved in cellular process, immune system processes, metabolic processes, and signal-organism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in several signaling pathways such as Toll-like receptor signaling, Jak-STAT signaling, RIG-I-like receptor signaling and AGE-RAGE signaling pathway. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the sequencing data. To our knowledge, this study is the first to analyze the transcriptomic change in DF-1 cells following DTMUV infection. We believe that our research provides useful information in better understanding the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of life sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
4
|
Complete Genome Sequences of Two Human Adenovirus Type 55 Isolates from South Korea and the United States. Microbiol Resour Announc 2021; 10:10/5/e01347-20. [PMID: 33541877 PMCID: PMC7862955 DOI: 10.1128/mra.01347-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations. Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations.
Collapse
|
5
|
Fan H, Lu B, Cao C, Li H, Yang D, Huang L, Ding T, Wu M, Lu G. Plasma TNFSF13B and TNFSF14 Function as Inflammatory Indicators of Severe Adenovirus Pneumonia in Pediatric Patients. Front Immunol 2021; 11:614781. [PMID: 33542721 PMCID: PMC7851050 DOI: 10.3389/fimmu.2020.614781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background Human adenoviruses (HAdV) infection caused pneumonia remains a major threat to global children health. Currently, diagnosis of severe HAdV pneumonia in children is hampered by the lack of specific biomarkers. Also, the severity of adenovirus pneumonia in pediatric patients is generally based on clinical features and existing biomarkers do not reliably correlate to clinical severity. Here, we asked whether local and systemic inflammatory mediators could act as biomarkers predicting severe HAdV pneumonia in children. Methods Totally 37 common inflammatory protein levels were determined by Luminex assay in plasma and bronchoalveolar lavage (BAL) from pediatric patients who were diagnosed with HAdV pneumonia, and their correlation with the disease severity and lung lesion were assessed using statistical and bioinformatic analysis. Results Among 37 inflammatory cytokines, the protein levels of 4 TNF superfamily (TNFSF) members and their receptors (TNF receptor superfamily, TNFRSF) [TNFSF13B, TNFSF14, sTNF-R1 and sTNF-R2] in the plasma and 7 TNFSF/TNFRSF members [TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFRSF8, sTNF-R1, and sTNF-R2] in the BAL were enhanced in patients with HAdV pneumonia compared with control subjects with airway foreign body. Moreover, the protein levels of all the tested TNFSF/TNFRSF members (except TNFSF12) were elevated in the BAL of severe group compared with non-severe HAdV pneumonia patients, while only TNFSF13B and TNFSF14 were dramatically increased in the plasma of severe cases, and positively related to the plasma CRP levels. In addition, ROC analysis indicated that TNFSF13B and TNFSF14 displayed a great potential to predict severe HAdV pneumonia. Conclusion In pediatric HAdV pneumonia, TNFSF/TNFRSF members function as key molecules in local and systemic inflammatory network, and the plasma TNFSF13B and TNFSF14 may be the potential local and systemic inflammatory indicators of severe HAdV pneumonia in pediatric patients.
Collapse
Affiliation(s)
- Huifeng Fan
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Can Cao
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Diyuan Yang
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Ding
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Fain B, Dobrovolny HM. Initial Inoculum and the Severity of COVID-19: A Mathematical Modeling Study of the Dose-Response of SARS-CoV-2 Infections. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2020; 1:5-15. [PMID: 36417207 PMCID: PMC9620883 DOI: 10.3390/epidemiologia1010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) causes a variety of responses in those who contract the virus, ranging from asymptomatic infections to acute respiratory failure and death. While there are likely multiple mechanisms triggering severe disease, one potential cause of severe disease is the size of the initial inoculum. For other respiratory diseases, larger initial doses lead to more severe outcomes. We investigate whether there is a similar link for SARS-CoV-2 infections using the combination of an agent-based model (ABM) and a partial differential equation model (PDM). We use the model to examine the viral time course for different sizes of initial inocula, generating dose-response curves for peak viral load, time of viral peak, viral growth rate, infection duration, and area under the viral titer curve. We find that large initial inocula lead to short infections, but with higher viral titer peaks; and that smaller initial inocula lower the viral titer peak, but make the infection last longer.
Collapse
|
7
|
Punga T, Darweesh M, Akusjärvi G. Synthesis, Structure, and Function of Human Adenovirus Small Non-Coding RNAs. Viruses 2020; 12:E1182. [PMID: 33086737 PMCID: PMC7589676 DOI: 10.3390/v12101182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Human adenoviruses (HAdVs) are common pathogens causing a variety of respiratory, ocular and gastrointestinal diseases. To accomplish their efficient replication, HAdVs take an advantage of viral small non-coding RNAs (sncRNAs), which have multiple roles during the virus lifecycle. Three of the best-characterized HAdV sncRNAs; VA RNA, mivaRNA and MLP-TSS-sRNA will be discussed in the present review. Even though VA RNA has been extensively characterized during the last 60 years, this multifunctional molecule continues to surprise us as more of its structural secrets unfold. Likely, the recent developments on mivaRNA and MLP-TSS-sRNA synthesis and function highlight the importance of these sncRNA in virus replication. Collectively, we will summarize the old and new knowledge about these three viral sncRNAs with focus on their synthesis, structure and functions.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; (M.D.); (G.A.)
| | | | | |
Collapse
|
8
|
Human Desmoglein-2 and Human CD46 Mediate Human Adenovirus Type 55 Infection, but Human Desmoglein-2 Plays the Major Roles. J Virol 2020; 94:JVI.00747-20. [PMID: 32581096 DOI: 10.1128/jvi.00747-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Human adenovirus type 55 (HAdV55) represents an emerging respiratory pathogen and causes severe pneumonia with high fatality in humans. The cellular receptors, which are essential for understanding the infection and pathogenesis of HAdV55, remain unclear. In this study, we found that HAdV55 binding and infection were sharply reduced by disrupting the interaction of viral fiber protein with human desmoglein-2 (hDSG2) but only slightly reduced by disrupting the interaction of viral fiber protein with human CD46 (hCD46). Loss-of-function studies using soluble receptors, blocking antibodies, RNA interference, and gene knockout demonstrated that hDSG2 predominantly mediated HAdV55 infection. Nonpermissive rodent cells became susceptible to HAdV55 infection when hDSG2 or hCD46 was expressed, but hDSG2 mediated more efficient HAd55 infection than hCD46. We generated two transgenic mouse lines that constitutively express either hDSG2 or hCD46. Although nontransgenic mice were resistant to HAdV55 infection, infection with HAdV55 was significantly increased in hDSG2+/+ mice but was much less increased in hCD46+/+ mice. Our findings demonstrate that both hDSG2 and hCD46 are able to mediate HAdV55 infection but hDSG2 plays the major roles. The hDSG2 transgenic mouse can be used as a rodent model for evaluation of HAdV55 vaccine and therapeutics.IMPORTANCE Human adenovirus type 55 (HAdV55) has recently emerged as a highly virulent respiratory pathogen and has been linked to severe and even fatal pneumonia in immunocompetent adults. However, the cellular receptors mediating the entry of HAdV55 into host cells remain unclear, which hinders the establishment of HAdV55-infected animal models and the development of antiviral approaches. In this study, we demonstrated that human desmoglein-2 (hDSG2) plays the major roles during HAdV55 infection. Human CD46 (hCD46) could also mediate the infection of HAdV55, but the efficiency was much lower than for hDSG2. We generated two transgenic mouse lines that express either hDSG2 or hCD46, both of which enabled HAd55 infection in otherwise nontransgenic mice. hDSG2 transgenic mice enabled more efficient HAdV55 infection than hCD46 transgenic mice. Our study adds to our understanding of HAdV55 infection and provides an animal model for evaluating HAdV55 vaccines and therapeutics.
Collapse
|
9
|
Perlin DS, Zafir-Lavie I, Roadcap L, Raines S, Ware CF, Neil GA. Levels of the TNF-Related Cytokine LIGHT Increase in Hospitalized COVID-19 Patients with Cytokine Release Syndrome and ARDS. mSphere 2020; 5:e00699-20. [PMID: 32817460 PMCID: PMC7426176 DOI: 10.1128/msphere.00699-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Many coronavirus disease 2019 (COVID-19) patients demonstrate lethal respiratory complications caused by cytokine release syndrome (CRS). Multiple cytokines have been implicated in CRS, but levels of tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) have not been previously measured in this setting. In this study, we observed significantly elevated serum LIGHT levels in hospitalized COVID-19 patients compared to healthy age- and gender-matched control patients. The assay detected bioavailable LIGHT unbound to the inhibitor Decoy receptor-3 (DcR3). Bioavailable LIGHT levels were elevated in patients both on and off ventilatory support, with a trend toward higher levels in patients requiring mechanical ventilation. In hospitalized patients over the age of 60, who exhibited a mortality rate of 82%, LIGHT levels were significantly higher (P = 0.0209) in those who died than in survivors. As previously reported, interleukin 6 (IL-6) levels were also elevated in these patients, with significantly (P = 0.0076) higher levels observed in patients who died than in survivors, paralleling the LIGHT levels. Although attempts to block IL-6 binding to its receptor have shown limited success in COVID-19 CRS, neutralization of LIGHT may prove to be more effective owing to its more central role in regulating antiviral immune responses. The findings presented here demonstrate that LIGHT is a cytokine which may play an important role in COVID-19 patients presenting with acute respiratory distress syndrome (ARDS) and CRS and suggest that LIGHT neutralization may be beneficial to COVID-19 patients.
Collapse
Affiliation(s)
- David S Perlin
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | | | | | - Shane Raines
- 2b Analytics, LLC, Wallingford, Pennsylvania, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | |
Collapse
|
10
|
Wu Q, Ning X, Jiang S, Sun L. Transcriptome analysis reveals seven key immune pathways of Japanese flounder (Paralichthys olivaceus) involved in megalocytivirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 103:150-158. [PMID: 32413472 DOI: 10.1016/j.fsi.2020.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Megalocytivirus is a serious viral pathogen to many farmed fish including Japanese flounder (Paralichthys olivaceus). In this study, in order to systematically identify host immune genes induced by megalocytivirus infection, we examined the transcription profiles of flounder infected by megalocytivirus for 2, 6, and 8 days. Compared with uninfected fish, virus-infected fish exhibited 1242 differentially expressed genes (DEGs), with 225, 275, and 877 DEGs occurring at 2, 6, and 8 days post infection, respectively. Of these DEGs, 728 were upregulated and 659 were downregulated. The majority of DEGs were time-specific and formed four distinct expression profiles well correlated with the time of infection. The DEGs were classified into diverse Gene Ontology (GO) functional terms and enriched in 27 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, approximately one third of which were related to immunity. Weighted co-expression network analysis (WGCNA) was used to identify 16 key immune DEGs belonging to seven immune pathways (RIG-I-like receptor signaling pathway, JAK-STAT signaling pathway, TLR signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and p53 signaling pathway). These pathways interacted extensively and formed complicated networks. This study provided a global picture of megalocytivirus-induced gene expression profiles of flounder at the transcriptome level and uncovered a set of key immune genes and pathways closely linked to megalocytivirus infection. These results provided a set of targets for future delineation of the key factors implicated in the anti-megalocytivirus immunity of flounder.
Collapse
Affiliation(s)
- Qian Wu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
11
|
Wang X, He S, Zhou Z, Bo X, Qi D, Fu X, Wang Z, Yang J, Wang S. LINCS dataset-based repositioning of rosiglitazone as a potential anti-human adenovirus drug. Antiviral Res 2020; 179:104789. [DOI: 10.1016/j.antiviral.2020.104789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
|
12
|
Zhao H, Punga T, Pettersson U. Adenovirus in the omics era - a multipronged strategy. FEBS Lett 2020; 594:1879-1890. [PMID: 31811727 DOI: 10.1002/1873-3468.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.
Collapse
Affiliation(s)
- Hongxing Zhao
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ulf Pettersson
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
13
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Petralia MC, Mazzon E, Fagone P, Falzone L, Bramanti P, Nicoletti F, Basile MS. Retrospective follow-up analysis of the transcriptomic patterns of cytokines, cytokine receptors and chemokines at preconception and during pregnancy, in women with post-partum depression. Exp Ther Med 2019; 18:2055-2062. [PMID: 31410161 PMCID: PMC6676209 DOI: 10.3892/etm.2019.7774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Post-partum depression (PPD) occurs in approximately 20% of women usually early following child delivery. PPD represents an important unmet medical need as it is frequently underdiagnosed and, as the neurobiology of the disease is limitedly known, no pathogenic-tailored approach is available and only symptomatic medications are used. In the present study, we carried out a DNA microarray analysis to evaluate the fluctuation of cytokines, cytokine receptors and chemokines during the preconception period, the 1st and 3th trimester of pregnancy and the early post-partum period. The data demonstrated that, as compared to always-depressed patients and euthymic controls, women who developed PPD exhibited significant fluctuations in the levels of different cytokines and cytokine receptors, primarily related to tumor necrosis factor (TNF) and interleukin (IL)18. These data emphasize the role of the immune system in PPD. However, additional studies aimed at evaluating if and how these functional modifications of the immune system during pregnancy are related to the development of PPD warranted to confirm our findings.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| |
Collapse
|