1
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
2
|
Wang J, Liu H, Peng MW, Qing T, Feng B, Zhang P. Amoxicillin degradation and high-value extracellular polymer recovery by algal-bacterial symbiosis systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132344. [PMID: 37611392 DOI: 10.1016/j.jhazmat.2023.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Algal-bacterial symbiosis systems have emerged as sustainable methods for the treatment of new pollutants and the recovery of resources. However, the bio-refinery of biomass derived from microalgae is inefficient and expensive. In order to simultaneously degrade antibiotic and recover resources efficiently, two algal-bacterial symbiosis systems were constructed using Pseudomonas aeruginosa (alginate overproduction) and Bacillus subtilis (poly-γ-glutamic acid overproduction) with amoxicillin-degrading-microalga Prototheca zopfii W1. The optimal conditions for W1 to degrade amoxicillin are 35 °C, pH 7, and 180 rpm. In the presence of 5-50 mg/L of amoxicillin, W1-P. aeruginosa and W1-B. subtilis exhibit higher amoxicillin degradation and produce more extracellular polymers than W1 or bacteria alone. The metabolomic analysis demonstrates that the algal-bacterial symbiosis enhances the tolerance of W1 to amoxicillin by altering carbohydrate metabolism and promotes the production of biopolymers by upregulating the precursors synthesis. Moreover, the removal of amoxicillin (10 mg/L) from livestock effluent by W1-P. aeruginosa and W1-B. subtilis is greater than 90 % in 3 days, and the maximum yields of alginate and poly-γ-glutamate are 446.1 and 254.3 mg/g dry cell weight, respectively. These outcomes provide theoretical support for the application of algal-bacterial symbiosis systems to treatment of amoxicillin wastewater and efficient production of biopolymers.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongyuan Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | | | - Taiping Qing
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Proskurnicka A, Żupnik K, Bakuła Z, Iskra M, Rösler U, Jagielski T. Drug Susceptibility Profiling of Prototheca Species Isolated from Cases of Human Protothecosis. Antimicrob Agents Chemother 2023; 67:e0162722. [PMID: 36943065 PMCID: PMC10112244 DOI: 10.1128/aac.01627-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prototheca are unicellular, achlorophyllous, yeast-like microalgae that occur in a wide range of natural habitats. At least five species have been implicated as the causative agents of opportunistic infections of men. Human protothecosis typically manifests as cutaneous, articular, or systemic disease. Treatment is largely empirical with poorly predictable and often unsuccessful outcomes. This is largely due to the frequently observed resistance of Prototheca species to conventional antimicrobial agents. This work is the first to perform drug susceptibility profiling exclusively on isolates from human cases of protothecosis. A total of 23 such isolates were tested against amphotericin B and 9 azoles, including efinaconazole and luliconazole, whose activities against Prototheca have never been studied before. Efinaconazole was the most active, with median minimum inhibitory concentration (MIC) and minimum algicidal concentration (MAC) values of 0.031 mg/L and 0.063 mg/L, respectively. Fluconazole and luliconazole had the lowest activity, with median MIC and MAC values of 128 mg/L. To conclude, amphotericin B and most of the azoles showed in vitro activity, with an algicidal rather than algistatic effect, against Prototheca. Still, the activity of individual drugs differed significantly between the species and even between strains of the same species. These differences can be attributed to a species-specific potential for acquiring drug resistance, which, in turn, might be linked to the treatment history of the patient from whom the strain was recovered. The results of this study underscore the potential clinical utility of efinaconazole as a promising therapeutic agent for the treatment of human protothecosis.
Collapse
Affiliation(s)
- Angelika Proskurnicka
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kinga Żupnik
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Iskra
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Uwe Rösler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Li Q, Zhan Y, Xu Y, Zhang L, Di P, Lu B, Chen C. Deciphering the transcriptomic response of Ilyonectria robusta in relation to ginsenoside Rg1 treatment and the development of Ginseng rusty root rot. FEMS Microbiol Lett 2022; 369:6659192. [PMID: 35945650 DOI: 10.1093/femsle/fnac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/02/2022] [Accepted: 08/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rusty root rot is a severe disease in Ginseng (Panax ginseng C.A.Mey.) production caused by Ilyonectria robusta. The severity of the disease may be related to the residual ginsenosides in soil. In order to elucidate the response mechanism between Rg1 treatment and occurrence of ginseng rust, we performed growth, reproduction and transcriptome analysis on Rg1-treated. The results showed that Rg1 significantly promoted the mycelial growth, and sporulation compared to the control, and aggravated the disease symptoms of Panax ginseng. A total of 6708 transcripts out of 213 131 annotated genes identified from global transcriptomic analysis were differentially expressed in Ilyonectria robusta grown in the Rg1 treatment. These genes were found to be related to the carbon-nitrogen metabolism, transport, and assimilation. Many of these genes were also associated with pathogenicity based on the Phi-base database. Several transcription factors were related to specific biological processes, such as nitrogen utilization. The current results revealed that Rg1 played a major role in the development of rusty root rot by promoting fungal cell growth and affected the expression of genes required for pathogenesis. Rg1 could aggravate the invasion of Ilyonectria robusta on ginseng root, which preliminarily revealed the reason for the aggravation of rusty root rot in ginseng soil-borne.
Collapse
Affiliation(s)
- Qiong Li
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China.,Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| | - Yu Zhan
- Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| | - Yonghua Xu
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Lianxue Zhang
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Peng Di
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Baohui Lu
- State -Local Joint Engineering Research Center of Ginseng Breeding and Application (Jilin), Jilin Agricultural University, Changchun, China
| | - Changbao Chen
- Jilin ginseng Academy in Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Guo J, Jian J, Wang L, Xiong L, Lin H, Zhou Z, Sonnenschein EC, Wu W. Genome Sequences of Two Strains of Prototheca wickerhamii Provide Insight Into the Protothecosis Evolution. Front Cell Infect Microbiol 2022; 12:797017. [PMID: 35186789 PMCID: PMC8847788 DOI: 10.3389/fcimb.2022.797017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The Prototheca alga is the only chlorophyte known to be involved in a series of clinically relevant opportunistic infections in humans and animals, namely, protothecosis. Most pathogenic cases in humans are caused by Prototheca wickerhamii. In order to investigate the evolution of Prototheca and the genetic basis for its pathogenicity, the genomes of two P. wickerhamii strains S1 and S931 were sequenced using Nanopore long-read and Illumina short-read technologies. The mitochondrial, plastid, and nuclear genomes were assembled and annotated including a transcriptomic data set. The assembled nuclear genome size was 17.57 Mb with 19 contigs and 17.45 Mb with 26 contigs for strains S1 and S931, respectively. The number of predicted protein-coding genes was approximately 5,700, and more than 96% of the genes could be annotated with a gene function. A total of 2,798 gene families were shared between the five currently available Prototheca genomes. According to the phylogenetic analysis, the genus of Prototheca was classified in the same clade with A. protothecoides and diverged from Chlorella ~500 million years ago (Mya). A total of 134 expanded genes were enriched in several pathways, mostly in metabolic pathways, followed by biosynthesis of secondary metabolites and RNA transport. Comparative analysis demonstrated more than 96% consistency between the two herein sequenced strains. At present, due to the lack of sufficient understanding of the Prototheca biology and pathogenicity, the diagnosis rate of protothecosis is much lower than the actual infection rate. This study provides an in-depth insight into the genome sequences of two strains of P. wickerhamii isolated from the clinic to contribute to the basic understanding of this alga and explore future prevention and treatment strategies.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijuan Xiong
- Department of Laboratory Medicine, Guizhou University The Second Affiliated Hospital of Traditional Chinese Medicine, Guizhou, China
| | - Huiping Lin
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziyi Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Wenjuan Wu, ; Eva C. Sonnenschein,
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wenjuan Wu, ; Eva C. Sonnenschein,
| |
Collapse
|
6
|
Survey on the Presence of Bacterial, Fungal and Helminthic Agents in Off-Leash Dog Parks Located in Urban Areas in Central-Italy. Animals (Basel) 2021; 11:ani11061685. [PMID: 34198875 PMCID: PMC8229923 DOI: 10.3390/ani11061685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Off-leash dog parks are designated, generally fenced, public spaces where dogs can move freely under the supervision of their owners. These areas, allowing animals to socialize and run free, play a fundamental role in dogs’ welfare. However, such environments may be a source of different pathogens, even zoonotic, excreted by the attending animals. The present study evaluated the occurrence of bacterial, fungal, and parasitic pathogens in off-leash dog parks located in Florence (central Italy). Yersinia spp., Listeria innocua, Toxocara canis eggs and Ancylostoma caninum/Uncinaria stenocephala eggs were found in canine feces. Keratinophilic geophilic fungi (mostly Microsporum gypseum/A. incurvatum, Microsporum canis in a single case) were recovered from soil. Trichosporon sp. and Geotrichum candidum were isolated from two water samples. The obtained results suggest that, despite the not negligible canine fecal contamination of selected areas (feces were found in 88.5% of the parks), attending dogs did not act as important carriers for the investigated pathogens, although examined off-leash dog parks may represent a risk for the spreading of some dermatophytoses to both pets and their owners. Thus, in a One-Health perspective, periodical examinations to detect the main bacteriological, parasitological and mycological pathogens in different samples collected in off-leash dog parks are recommended. Abstract Off-leash dog parks are designated public spaces where dogs can move freely, under their owners’ supervision. These areas, allowing animals to socialize and move freely, are fundamental for dogs’ welfare. However, different pathogens, even zoonotic, may be excreted by the attending animals and contaminate the environment. The aim of the present study was to verify the occurrence of bacterial, fungal and parasitic pathogens in off-leash dog parks located in Florence (central Italy). Between March and May 2019, 83 fecal samples, 43 soil samples and 23 water samples (from fountains and puddles) collected from 26 off-leash fenced areas were examined. Fecal samples scored positive for Yersinia spp. (n = 7), Listeria innocua (n = 4), Toxocara canis eggs (n = 2) and Ancylostoma caninum/Uncinaria stenocephala eggs (n = 1). Keratinophilic geophilic fungi (mostly Microsporum gypseum /A. incurvatum) were recovered from 43 soil samples belonging to 23 out of 26 parks, along with Microsporum canis in a single case. Prototheca spp. was never isolated from water samples, while Trichosporon sp. was cultured in two cases, alone and in association with Geotrichum candidum. These results show that dogs did not act as important carriers for the investigated bacterial and parasitic pathogens, although examined areas may represent a risk for the spreading of some dermatophytoses to both pets and their owners. Periodical examinations to assess the main bacteriological, parasitological and mycological pathogens in different samples collected in off-leash dog parks should be carried out in a One-Health perspective.
Collapse
|
7
|
Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of Prototheca wickerhamii, a major causative agent of human protothecosis. BMC Genomics 2021; 22:168. [PMID: 33750287 PMCID: PMC7941945 DOI: 10.1186/s12864-021-07491-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colourless microalgae of the Prototheca genus are the only known plants that have consistently been implicated in a range of clinically relevant opportunistic infections in both animals and humans. The Prototheca algae are emerging pathogens, whose incidence has increased importantly over the past two decades. Prototheca wickerhamii is a major human pathogen, responsible for at least 115 cases worldwide. Although the algae are receiving more attention nowadays, there is still a substantial knowledge gap regarding their biology, and pathogenicity in particular. Here we report, for the first time, the complete nuclear genome, organelle genomes, and transcriptome of the P. wickerhamii type strain ATCC 16529. RESULTS The assembled genome size was of 16.7 Mbp, making it the smallest and most compact genome sequenced so far among the protothecans. Key features of the genome included a high overall GC content (64.5%), a high number (6081) and proportion (45.9%) of protein-coding genes, and a low repetitive sequence content (2.2%). The vast majority (90.6%) of the predicted genes were confirmed with the corresponding transcripts upon RNA-sequencing analysis. Most (93.2%) of the genes had their putative function assigned when searched against the InterProScan database. A fourth (23.3%) of the genes were annotated with an enzymatic activity possibly associated with the adaptation to the human host environment. The P. wickerhamii genome encoded a wide array of possible virulence factors, including those already identified in two model opportunistic fungal pathogens, i.e. Candida albicans and Trichophyton rubrum, and thought to be involved in invasion of the host or elicitation of the adaptive stress response. Approximately 6% of the P. wickerhamii genes matched a Pathogen-Host Interaction Database entry and had a previously experimentally proven role in the disease development. Furthermore, genes coding for proteins (e.g. ATPase, malate dehydrogenase) hitherto considered as potential virulence factors of Prototheca spp. were demonstrated in the P. wickerhamii genome. CONCLUSIONS Overall, this study is the first to describe the genetic make-up of P. wickerhamii and discovers proteins possibly involved in the development of protothecosis.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan J Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Hanna Panagiotopoulou
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
8
|
Bacova R, Kralik P, Kucharovicova I, Seydlova R, Moravkova M. A novel TaqMan qPCR assay for rapid detection and quantification of pro-inflammatory microalgae Prototheca spp. in milk samples. Med Mycol 2021; 59:784-792. [PMID: 33515018 DOI: 10.1093/mmy/myaa120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 01/23/2023] Open
Abstract
Animal or human protothecosis belongs to rather rare, endemic, pro-inflammatory infections. It is caused by achlorophyllous algae of the genus Prototheca. Especially, P. bovis (formerly P. zopfii genotype 2) is often inflected as a non-bacterial causative agent of dairy cattle mastitis. In this study, we present a multiplex real-time PCR (qPCR) system for rapid and exact Prototheca spp. detection and quantification. Limit of detection, diagnostic sensitivity, and specificity were determined. For the first time, specific sequences of AccD (encoding acetyl CoA reductase) for P. bovis, cox1 (encoding cytochrome C oxidase subunit 1) for P. wickerhamii, cytB (encoding cytochrome B) for P. blashkeae and atp6 (encoding transporting ATPase F0 subunit 6) for P. ciferrii (formerly P. zopfii genotype 1) were used for species identification and quantification together with 28S rRNA sequence detecting genus Prototheca. The developed qPCR assay was applied to 55 individual cow milk samples from a herd suspected of protothecosis, 41 bulk milk samples from different Czech farms, 16 boxed milk samples purchased in supermarkets and 21 environmental samples originating from a farm suspected of protothecosis. Our work thus offers the possibility to diagnose protothecosis in the samples, where bacterial mastitis is the most commonly presumed and thereby assisting adequate corrective measures to be taken.
Collapse
Affiliation(s)
- Romana Bacova
- Laboratory of Food Microbiology, Department of Food and Feed Safety , Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Petr Kralik
- Laboratory of Food Microbiology, Department of Food and Feed Safety , Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic.,Department of Animal Origin Food and Gastronomic Sciences, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic, Palackeho 1946/1, Brno, 612 42, Czech Republic
| | - Ivana Kucharovicova
- Department of Bacteriology, State Veterinary Institute Jihlava, Rantirovska 93/20, Jihlava - Horni Kosov, 586 01, Jihlava, Czech Republic
| | - Ruzena Seydlova
- Dairy Research Institute Prague, Ke Dvoru 12a, 160 00, Prague 6, Czech Republic
| | - Monika Moravkova
- Laboratory of Food Microbiology, Department of Food and Feed Safety , Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| |
Collapse
|
9
|
Masuda M, Jagielski T, Danesi P, Falcaro C, Bertola M, Krockenberger M, Malik R, Kano R. Protothecosis in Dogs and Cats-New Research Directions. Mycopathologia 2020; 186:143-152. [PMID: 33206310 DOI: 10.1007/s11046-020-00508-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Protothecosis refers to disease of humans and animals caused by infection with fungus-like, colourless microalgae of the genus Prototheca. Although protothecosis remains an uncommon infection, increasing numbers of human and animal cases are being diagnosed worldwide. This review summarises major new findings in basic science (sequencing analyses of sterol 14α-demethylase (CYP51/ERG11) genes and organelle genomes of Prototheca wickerhamii) to elucidate taxonomic features of this pathogen. Furthermore, this review updates and summarises the clinical features, diagnosis and treatment of protothecosis in dogs and cats. This content of this review is based on information presented at the medical phycology symposium held in the 20th Congress of the International Society for Human and Animal Mycology ( https://www.isham.org/ ).
Collapse
Affiliation(s)
- Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Patrizia Danesi
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services (VPDS), Sydney School of Veterinary Science, The University of Sydney, B14, Sydney, NSW, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, B22, Sydney, NSW, 2006, Australia
| | - Rui Kano
- Department of Veterinary Dermatology, Nihon University School of Veterinary Medicine, 1866, Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
10
|
Bakuła Z, Gromadka R, Gawor J, Siedlecki P, Pomorski JJ, Maciszewski K, Gromadka A, Karnkowska A, Jagielski T. Sequencing and Analysis of the Complete Organellar Genomes of Prototheca wickerhamii. FRONTIERS IN PLANT SCIENCE 2020; 11:1296. [PMID: 32983192 PMCID: PMC7492744 DOI: 10.3389/fpls.2020.01296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Of the Prototheca genus, Prototheca wickerhamii has the highest clinical significance in humans. However, neither nuclear nor organellar genomes of this species were sequenced until now. The hitherto determined and analyzed mitochondrial and plastid genomes of the alleged P. wickerhamii species belong in fact to another species, recently named Prototheca xanthoriae. This study provides a first insight into the organellar genomes of a true P. wickerhamii (type strain ATCC 16529). The P. wickerhamii mitochondrion had a 53.8-kb genome, which was considerably larger than that of Prototheca ciferrii (formerly Prototheca zopfii gen. 1) and Prototheca bovis (formerly Prototheca zopfii gen. 2), yet similarly functional, with the differences in size attributable to a higher number of introns and the presence of extra unique putative genes. The 48-kb plastid genome of P. wickerhamii, compared to autotrophic Trebouxiophyceae, was highly reduced due to the elimination of the photosynthesis-related genes. The gene content of the plastid genome of P. wickerhamii was, however, very similar to other colorless Prototheca species. Plastid genome-based phylogeny reinforced the polyphyly of the genus Prototheca, with Helicosporidium and Auxenochlorella branching within clades of Prototheca species. Phylogenetic reconstruction also confirmed the close relationship of P. wickerhamii and P. xanthoriae, which is reflected in the synteny of their organellar genomes. Interestingly, the entire set of atp genes was lost in P. wickerhamii plastid genome while being preserved in P. xanthoriae.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Jan J. Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Jiang K, Nie H, Li D, Yan X. New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 2020; 21:531. [PMID: 32738896 PMCID: PMC7430831 DOI: 10.1186/s12864-020-06914-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Manila clam (Ruditapes philippinarum) is a worldwide commercially important marine bivalve species. In recent years, however, microbial diseases caused high economic losses and have received increasing attention. To understand the molecular basis of the immune response to pathogen-associated molecular patterns (PAMPs) in R. philippinarum, transcriptome libraries of clam hepatopancreas were constructed at 24 h post-injection with Lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid (poly(I:C)) and phosphate-buffered saline (PBS) control by using RNA sequencing technology (RNA-seq). Results A total of 832, 839, and 188 differentially expressed genes (DEGs) were found in LPS, PGN, and poly(I:C) challenge group compared with PBS control, respectively. Several immune-related genes and pathways were activated in response to the different PAMPs, suggesting these genes and pathways might specifically participate in the immune response to pathogens. Besides, the analyses provided useful complementary data to compare different PAMPs challenges in vivo. Functional enrichment analysis of DEGs demonstrated that PAMPs responsive signal pathways were related to apoptosis, signal transduction, immune system, and signaling molecules and interaction. Several shared or specific DEGs response to different PAMPs were revealed in R. philippinarum, including pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), interferon-induced proteins (IFI), and some other immune-related genes were found in the present work. Conclusions This is the first study employing high throughput transcriptomic sequencing to provide valuable genomic resources and investigate Manila clam response to different PAMPs through in vivo challenges with LPS, PGN, and poly(I:C). The results obtained here provide new insights to understanding the immune characteristics of R. philippinarum response to different PAMPs. This information is critical to elucidate the molecular basis of R. philippinarum response to different pathogens invasion, which potentially can be used to develop effective control strategies for different pathogens.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
12
|
Yang J, Zhu J, Kudinha T, Kong F, Zhang QQ. Differences in in vitro interactions between macrophages with pathogenic and environmental strains of Prototheca. Future Microbiol 2020; 15:427-436. [PMID: 32250172 DOI: 10.2217/fmb-2019-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated the interactions between macrophage and different strains of Prototheca. Materials & method: J774A.1 macrophages were infected with clinical isolates of Prototheca ciferrii 18125 and P. ciferrii 50779 and environmental isolate of P. ciferrii N71. Phagocytosis activities were compared by colony-forming unit assays at 3, 6 and 9 h after infection. Cytokine levels were detected by RT-PCR and ELISA. iNOS protein expression was examined by western blotting. Results: All P. ciferrii strains were phagocytized by macrophages but induced different levels of cytokines in macrophages. Moreover, infected by P. ciferrii N71 upregulated much higher iNOS protein expression in J774A.1 than that infected by the clinical strains. Conclusion: Clinical and environmental P. ciferrii strains show differences in their interactions with macrophages, which may be attributed to their virulence.
Collapse
Affiliation(s)
- Jin Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, New South Wales, Australia.,Centre for Infectious Diseases & Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases & Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales, Australia
| | - Qiang-Qiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Shahid M, Cavalcante PA, Knight CG, Barkema HW, Han B, Gao J, Cobo ER. Murine and Human Cathelicidins Contribute Differently to Hallmarks of Mastitis Induced by Pathogenic Prototheca bovis Algae. Front Cell Infect Microbiol 2020; 10:31. [PMID: 32117805 PMCID: PMC7025567 DOI: 10.3389/fcimb.2020.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Prototheca bovis (formerly P. zopfii genotype-II) is an opportunistic, achlorophyllous alga that causes mastitis in cows and skin disease in cats and dogs, as well as cutaneous lesions in both immunocompetent and immunosuppressed humans. Antifungal medications are commonly ineffective. This study aimed to investigate innate immune responses contributed by cathelicidins to P. bovis in the mammary gland using a mastitis model in mice deficient in the sole murine cathelicidin (Camp). We determined P. bovis caused acute mastitis in mice and induced Camp gene transcription. Whereas, Camp-/- and Camp+/+ littermates had similar local algae burden, Camp+/+ mice produced more pro-inflammatory cytokines, TNF-α, and Cxcl-1. Likewise, Camp+/+ bone marrow-derived macrophages were more responsive to P. bovis, producing more TNF-α and Cxcl-1. Human cathelicidin (LL-37) exhibited a different effect against P. bovis; it had direct algicidal activity against P. bovis and lowered TNF-α, Cxcl-1, and IL-1β production in both cultured murine macrophages and mammary epithelial cells exposed to the pathogenic algae. In conclusion, cathelicidins were involved in protothecosis pathogenesis, with unique roles among the diverse peptide family. Whereas, endogenous cathelicidin (Camp) was key in mammary gland innate defense against P. bovis, human LL-37 had algicidal and immunomodulatory functions.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Paloma Araujo Cavalcante
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron G. Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Emergence of Fungal-Like Organisms: Prototheca. Mycopathologia 2019; 185:747-754. [PMID: 31401758 DOI: 10.1007/s11046-019-00365-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The genus Prototheca consists of achlorophyllic algae that are ubiquitous in the environment and animal intestines. However, this organism has forfeited its photosynthetic ability and switched to parasitism. In 1894, Krüger described two microorganisms isolated in Germany from mucous flux of Tilia and Ulmus spp., namely Prototheca moriformis and P. zopfii. Based on their yeast-like colony morphology, Krüger classified these organisms as fungi. The genus is now included within the class Trebouxiophyceae, order Chlorellales, and family Chlorellaceae. Historically, protothecosis and infections caused by green algae have been studied in the field of medical mycology. Prototheca spp. have been found to colonize human skin, fingernails, the respiratory tract, and digestive system. Although human infection by Prototheca is considered rare, an increase in infections has been noted among immunosuppressed patients, those on corticosteroid treatment, or both. Moreover, the first human outbreak of protothecal algaemia and sepsis was recently reported in a tertiary care chemotherapy oncology unit in 2018. Prototheca is also a causative pathogen of bovine disease. Prototheca zopfii and P. blaschkeae are associated with bovine mastitis, which causes a reduction in milk production and secretion of thin, watery milk containing white flakes. Economic losses are incurred either directly via reduced milk production and premature culling of affected animals or indirectly as a result of treatment and veterinary care expenses. Thus, knowledge of this fungal-like pathogen is essential in human and veterinary medicine. In this mini-review, I briefly introduce human and animal protothecoses.
Collapse
|