1
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
2
|
Peng M, Jiang Z, Zhou F, Wang Z. From salty to thriving: plant growth promoting bacteria as nature's allies in overcoming salinity stress in plants. Front Microbiol 2023; 14:1169809. [PMID: 37426022 PMCID: PMC10327291 DOI: 10.3389/fmicb.2023.1169809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Soil salinity is one of the main problems that affects global crop yield. Researchers have attempted to alleviate the effects of salt stress on plant growth using a variety of approaches, including genetic modification of salt-tolerant plants, screening the higher salt-tolerant genotypes, and the inoculation of beneficial plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves or stems, and can promote plant growth and increase plant tolerance to abiotic stress. Many halophytes recruit salt-resistant microorganisms, and therefore endophytic bacteria isolated from halophytes can help enhance plant stress responses. Beneficial plant-microbe interactions are widespread in nature, and microbial communities provide an opportunity to understand these beneficial interactions. In this study, we provide a brief overview of the current state of plant microbiomes and give particular emphasis on its influence factors and discuss various mechanisms used by PGPB in alleviating salt stress for plants. Then, we also describe the relationship between bacterial Type VI secretion system and plant growth promotion.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhihui Jiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Fangzhen Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| |
Collapse
|
3
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
4
|
Jiang X, Pees T, Reinhold-Hurek B. Deep-learning-based removal of autofluorescence and fluorescence quantification in plant-colonizing bacteria in vivo. THE NEW PHYTOLOGIST 2022; 235:2481-2495. [PMID: 35752974 DOI: 10.1111/nph.18344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence microscopy is common in bacteria-plant interaction studies. However, strong autofluorescence from plant tissues impedes in vivo studies on endophytes tagged with fluorescent proteins. To solve this problem, we developed a deep-learning-based approach to eliminate plant autofluorescence from fluorescence microscopy images, tested for the model endophyte Azoarcus olearius BH72 colonizing Oryza sativa roots. Micrographs from three channels (tdTomato for gene expression, green fluorescent protein (GFP) and AutoFluorescence (AF)) were processed by a neural network based approach, generating images that simulate the background autofluorescence in the tdTomato channel. After subtracting the model-generated signals from each pixel in the genuine channel, the autofluorescence in the tdTomato channel was greatly reduced or even removed. The deep-learning-based approach can be applied for fluorescence detection and quantification, exemplified by a weakly expressed, a cell-density modulated and a nitrogen-fixation gene in A. olearius. A transcriptional nifH::tdTomato fusion demonstrated stronger induction of nif genes inside roots than outside, suggesting extension of the rhizosphere effect for diazotrophs into the endorhizosphere. The pre-trained convolutional neural network model is easily applied to process other images of the same plant tissues with the same settings. This study showed the high potential of deep-learning-based approaches in image processing. With proper training data and strategies, autofluorescence in other tissues or materials can be removed for broad applications.
Collapse
Affiliation(s)
- Xun Jiang
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| | - Tobias Pees
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| |
Collapse
|
5
|
RNA-Seq Provides New Insights into the Gene Expression Changes in Azoarcus olearius BH72 under Nitrogen-Deficient and Replete Conditions beyond the Nitrogen Fixation Process. Microorganisms 2021; 9:microorganisms9091888. [PMID: 34576783 PMCID: PMC8467165 DOI: 10.3390/microorganisms9091888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Azoarcus olearius BH72 is an endophyte capable of biological nitrogen fixation (BNF) and of supplying nitrogen to its host plant. Our previous microarray approach provided insights into the transcriptome of strain BH72 under N2-fixation in comparison to ammonium-grown conditions, which already indicated the induction of genes not related to the BNF process. Due to the known limitations of the technique, we might have missed additional differentially expressed genes (DEGs). Thus, we used directional RNA-Seq to better comprehend the transcriptional landscape under these growth conditions. RNA-Seq detected almost 24% of the annotated genes to be regulated, twice the amount identified by microarray. In addition to confirming entire regulated operons containing known DEGs, the new approach detected the induction of genes involved in carbon metabolism and flagellar and twitching motility. This may support N2-fixation by increasing energy production and by finding suitable microaerobic niches. On the other hand, energy expenditures were reduced by suppressing translation and vitamin biosynthesis. Nonetheless, strain BH72 does not appear to be content with N2-fixation but is primed for alternative economic N-sources, such as nitrate, urea or amino acids; a strong gene induction of machineries for their uptake and assimilation was detected. RNA-Seq has thus provided a better understanding of a lifestyle under limiting nitrogen sources by elucidating hitherto unknown regulated processes.
Collapse
|
6
|
Pankievicz VCS, do Amaral FP, Ané JM, Stacey G. Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:491-498. [PMID: 33543986 DOI: 10.1094/mpmi-11-20-0316-fi] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant-growth-promoting bacteria (PGPB) stimulate plant growth through diverse mechanisms. In addition to biological nitrogen fixation, diazotrophic PGPB can improve nutrient uptake efficiency from the soil, produce and release phytohormones to the host, and confer resistance against pathogens. The genetic determinants that drive the success of biological nitrogen fixation in nonlegume plants are understudied. These determinants include recognition and signaling pathways, bacterial colonization, and genotype specificity between host and bacteria. This review presents recent discoveries of how nitrogen-fixing PGPB interact with cereals and promote plant growth. We suggest adopting an experimental model system, such as the Setaria-diazotrophic bacteria association, as a reliable way to better understand the associated mechanisms and, ultimately, increase the use of PGPB inoculants for sustainable agriculture.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Fernanda Plucani do Amaral
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, U.S.A
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
7
|
Weiten A, Kalvelage K, Becker P, Reinhardt R, Hurek T, Reinhold-Hurek B, Rabus R. Complete Genomes of the Anaerobic Degradation Specialists Aromatoleum petrolei ToN1T and Aromatoleum bremense PbN1T. Microb Physiol 2021; 31:16-35. [PMID: 33477134 DOI: 10.1159/000513167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The betaproteobacterial genus Aromatoleum comprises facultative denitrifiers specialized in the anaerobic degradation of recalcitrant organic compounds (aromatic and terpenoid). This study reports on the complete and manually annotated genomes of Ar. petrolei ToN1T (5.41 Mbp) and Ar. bremense PbN1T (4.38 Mbp), which cover the phylogenetic breadth of the genus Aromatoleum together with previously genome sequenced Ar. aromaticum EbN1T [Rabus et al., Arch Microbiol. 2005 Jan;183(1):27-36]. The gene clusters for the anaerobic degradation of aromatic and terpenoid (strain ToN1T only) compounds are scattered across the genomes of strains ToN1T and PbN1T. The richness in mobile genetic elements is shared with other Aromatoleum spp., substantiating that horizontal gene transfer should have been a major driver in shaping the genomes of this genus. The composite catabolic network of strains ToN1T and PbN1T comprises 88 proteins, the coding genes of which occupy 86.1 and 76.4 kbp (1.59 and 1.75%) of the respective genome. The strain-specific gene clusters for anaerobic degradation of ethyl-/propylbenzene (strain PbN1T) and toluene/monoterpenes (strain ToN1T) share high similarity with their counterparts in Ar. aromaticum strains EbN1T and pCyN1, respectively. Glucose is degraded via the ED-pathway in strain ToN1T, while gluconeogenesis proceeds via the reverse EMP-pathway in strains ToN1T, PbN1T, and EbN1T. The diazotrophic, endophytic lifestyle of closest related genus Azoarcus is known to be associated with nitrogenase and type-6 secretion system (T6SS). By contrast, strains ToN1T, PbN1T, and EbN1T lack nif genes for nitrogenase (including cofactor synthesis and enzyme maturation). Moreover, strains PbN1T and EbN1T do not possess tss genes for T6SS, while strain ToN1T does and facultative endophytic "Aromatoleum" sp. CIB is known to even have both. These findings underpin the functional heterogeneity among Aromatoleum members, correlating with the high plasticity of their genomes.
Collapse
Affiliation(s)
- Arne Weiten
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kristin Kalvelage
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Patrick Becker
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
8
|
Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains. FEMS Microbiol Ecol 2020; 96:fiaa073. [PMID: 32558899 PMCID: PMC7353953 DOI: 10.1093/femsec/fiaa073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/21/2020] [Indexed: 01/25/2023] Open
Abstract
Xenorhabdus bovienii strain jolietti (XBJ) is a Gram-negative bacterium that interacts with several organisms as a part of its life cycle. It is a beneficial symbiont of nematodes, a potent pathogen of a wide range of soil-dwelling insects and also has the ability to kill soil- and insect-associated microbes. Entomopathogenic Steinernema nematodes vector XBJ into insects, releasing the bacteria into the insect body cavity. There, XBJ produce a variety of insecticidal toxins and antimicrobials. XBJ's genome also encodes two separate Type Six Secretion Systems (T6SSs), structures that allow bacteria to inject specific proteins directly into other cells, but their roles in the XBJ life cycle are mostly unknown. To probe the function of these T6SSs, we generated mutant strains lacking the key structural protein Hcp from each T6SS and assessed phenotypes related to different parts of XBJ's life cycle. Here we demonstrate that one of the T6SSs is more highly expressed in in vitro growth conditions and has antibacterial activity against other Xenorhabdus strains, and that the two T6SSs have a redundant role in biofilm formation.
Collapse
Affiliation(s)
- Rebecca M Kochanowsky
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
- Center for Insect Science, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | - Christine Bradshaw
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Isabel Forlastro
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Lucke M, Correa MG, Levy A. The Role of Secretion Systems, Effectors, and Secondary Metabolites of Beneficial Rhizobacteria in Interactions With Plants and Microbes. FRONTIERS IN PLANT SCIENCE 2020; 11:589416. [PMID: 33240304 PMCID: PMC7680756 DOI: 10.3389/fpls.2020.589416] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Beneficial rhizobacteria dwell in plant roots and promote plant growth, development, and resistance to various stress types. In recent years there have been large-scale efforts to culture root-associated bacteria and sequence their genomes to uncover novel beneficial microbes. However, only a few strains of rhizobacteria from the large pool of soil microbes have been studied at the molecular level. This review focuses on the molecular basis underlying the phenotypes of three beneficial microbe groups; (1) plant-growth promoting rhizobacteria (PGPR), (2) root nodulating bacteria (RNB), and (3) biocontrol agents (BCAs). We focus on bacterial proteins and secondary metabolites that mediate known phenotypes within and around plants, and the mechanisms used to secrete these. We highlight the necessity for a better understanding of bacterial genes responsible for beneficial plant traits, which can be used for targeted gene-centered and molecule-centered discovery and deployment of novel beneficial rhizobacteria.
Collapse
|