1
|
Hemm L, Miucci A, Kraus A, Riediger M, Tholen S, Abdelaziz N, Georg J, Schilling O, Hess WR. Interactors and effects of overexpressing YlxR/RnpM, a conserved RNA binding protein in cyanobacteria. RNA Biol 2024; 21:1-19. [PMID: 39625117 PMCID: PMC11622646 DOI: 10.1080/15476286.2024.2429230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout the tree of life RNA-binding proteins play important roles, but they are poorly characterized in cyanobacteria. Overexpression of the predicted RNA-binding protein Ssr1238 in the cyanobacterium Synechocystis 6803 for 24 h led to higher levels of RNase P RNA, tRNAs, and stress-related mRNAs. Co-immunoprecipitation of proteins followed by MS analysis and sequencing of UV crosslinked, co-immunoprecipitated RNA samples identified potential interaction partners of Ssr1238. The most enriched transcript was RNase P RNA, and RnpA, the protein component of RNase P, was among the most highly enriched proteins. A second highly enriched transcript is derived from gene ssl3177, which encodes a central enzyme in cell wall remodelling during cell division. The data also showed a strong connection to the RNA maturation and modification system indicated by co-precipitation of RNA modifying enzymes, riboendonuclease E and enolase. Surprisingly, cyanophycin synthetase and urease were highly enriched as well. In conclusion, Ssr1238 specifically binds to two different transcripts and could be involved in the coordination of RNA maturation, translation, cell division, and aspects of nitrogen metabolism. Our results are consistent with recent findings that the B. subtilis YlxR protein functions as an RNase P modulator (RnpM), extending its proposed role to the phylum cyanobacteria, and suggesting additional functionalities.
Collapse
Affiliation(s)
- Luisa Hemm
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Miucci
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nouha Abdelaziz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Chen L, Wang C, Su J. Understanding the Effect of Different Glucose Concentrations in the Oligotrophic Bacterium Bacillus subtilis BS-G1 through Transcriptomics Analysis. Microorganisms 2023; 11:2401. [PMID: 37894061 PMCID: PMC10609351 DOI: 10.3390/microorganisms11102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose is an important carbon source for microbial growth, and its content in infertile soils is essential for the growth of bacteria. Since the mechanism of oligotrophic bacterium adaptation in barren soils is unclear, this research employed RNA-seq technology to examine the impact of glucose concentration on the oligotrophic bacterium B. subtilis BS-G1 in soil affected by desertification. A global transcriptome analysis (RNA-Seq) revealed that the significantly differentially expressed genes (DEGs) histidine metabolism, glutamate synthesis, the HIF-1 signaling pathway, sporulation, and the TCA cycle pathway of B. subtilis BS-G1 were significantly enriched with a 0.015 g/L glucose concentration (L group), compared to a 10 g/L glucose concentration (H group). The DEGs amino acid system, two-component system, metal ion transport, and nitrogen metabolism system of B. subtilis BS-G1 were significantly enriched in the 5 g/L glucose concentration (M group), compared with the H group. In addition, the present study identified the regulation pattern and key genes under a low-glucose environment (7 mRNAs and 16 sRNAs). This study primarily investigates the variances in the regulatory pathways of the oligotrophic B. subtilis BS-G1, which holds substantial importance in comprehending the mechanism underlying the limited sugar tolerance of oligotrophic bacteria.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chenglong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jianyu Su
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Ogura M, Matsutani M, Asai K, Suzuki M. Glucose controls manganese homeostasis through transcription factors regulating known and newly identified manganese transporter genes in Bacillus subtilis. J Biol Chem 2023; 299:105069. [PMID: 37468100 PMCID: PMC10448178 DOI: 10.1016/j.jbc.2023.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Mn2+ is an essential nutrient whose concentration is tightly controlled in bacteria. In Bacillus subtilis, the Mn2+-activated transcription factor MntR controls Mn2+ transporter genes. However, factors regulating intracellular Mn2+ concentration are incompletely understood. Here, we found that glucose addition induces an increase in intracellular Mn2+ concentration. We determined this upshift was mediated by glucose induction of the major Mn2+ importer gene mntH by the transcription factor AhrC, which is known to be involved in arginine metabolism and to be indirectly induced by glucose. In addition, we identified novel AhrC-regulated genes encoding the Mn2+ importer YcsG and the ABC-type exporter YknUV. We found the expression of these genes was also regulated by glucose and contributes to the glucose induction of Mn2+ concentrations. ycsG expression is regulated by MntR as well. Furthermore, we analyzed the interaction of AhrC and MntR with the promoter driving ycsG expression and examined the Mn2+-dependent induction of this promoter to identify the transcription factors responsible for the Mn2+ induction. RNA-Seq revealed that disruption of ahrC and mntR affected the expression of 502 and 478 genes, respectively (false discovery rate, <0.001, log2[fold change] ≥ |2|. The AhrC- and/or MntR-dependent expression of twenty promoters was confirmed by LacZ analysis, and AhrC or MntR binding to some of these promoters was observed via EMSA. The finding that glucose promotes an increase in intracellular Mn2+ levels without changes in extracellular Mn2+ concentrations is reasonable for the bacterium, as intracellular Mn2+ is required for enzymes and pathways mediating glucose metabolism.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Evsyutina DV, Semashko TA, Galyamina MA, Kovalchuk SI, Ziganshin RH, Ladygina VG, Fisunov GY, Pobeguts OV. Molecular Basis of the Slow Growth of Mycoplasma hominis on Different Energy Sources. Front Cell Infect Microbiol 2022; 12:918557. [PMID: 35873139 PMCID: PMC9301678 DOI: 10.3389/fcimb.2022.918557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.
Collapse
Affiliation(s)
- Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
- *Correspondence: Daria V. Evsyutina,
| | - Tatiana A. Semashko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Maria A. Galyamina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| |
Collapse
|
5
|
Ogura M. Identification of transposon-inserted mutations including rnpB::Tn that abolished glucose induction of sigX encoding extracytoplasmic function-sigma factor in Bacillus subtilis. Biosci Biotechnol Biochem 2022; 86:282-285. [PMID: 34864869 DOI: 10.1093/bbb/zbab211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the regulators of the glucose induction (GI) of the ECF-sigma genes sigX/M. During further screening of transposon-inserted mutants, we identified several regulators including an RNA component of RNase P (rnpB), which is required for tRNA maturation. A depletion of rnpB is known to trigger the stringent response. We showed evidence that the stringent response inhibited GI of sigX/M.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Orido, Shizuoka, Japan
| |
Collapse
|
6
|
Kanesaki Y, Ogura M. RNA-seq analysis identified glucose-responsive genes and YqfO as a global regulator in Bacillus subtilis. BMC Res Notes 2021; 14:450. [PMID: 34906218 PMCID: PMC8670212 DOI: 10.1186/s13104-021-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Objective We observed that the addition of glucose enhanced the expression of sigX and sigM, encoding extra-cytoplasmic function sigma factors in Bacillus subtilis. Several regulatory factors were identified for this phenomenon, including YqfO, CshA (RNA helicase), and YlxR (nucleoid-associated protein). Subsequently, the relationships among these regulators were analyzed. Among them, YqfO is conserved in many bacterial genomes and may function as a metal ion insertase or metal chaperone, but has been poorly characterized. Thus, to further characterize YqfO, we performed RNA sequencing (RNA-seq) analysis of YqfO in addition to CshA and YlxR. Results We first performed comparative RNA-seq to detect the glucose-responsive genes. Next, to determine the regulatory effects of YqfO in addition to CshA and YlxR, three pairs of comparative RNA-seq analyses were performed (yqfO/wt, cshA/wt, and ylxR/wt). We observed relatively large regulons (approximately 420, 780, and 180 for YqfO, CshA, and YlxR, respectively) and significant overlaps, indicating close relationships among the three regulators. This study is the first to reveal that YqfO functions as a global regulator in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05869-1.
Collapse
Affiliation(s)
- Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido Shimizu-ku, Shizuoka, 424-8610, Japan.
| |
Collapse
|
7
|
Reed CJ, Hutinet G, de Crécy-Lagard V. Comparative Genomic Analysis of the DUF34 Protein Family Suggests Role as a Metal Ion Chaperone or Insertase. Biomolecules 2021; 11:1282. [PMID: 34572495 PMCID: PMC8469502 DOI: 10.3390/biom11091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as "GTP cyclohydrolase I type 2" through electronic propagation based on one study. Here, the annotation status of this protein family was examined through a comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox, and universal stress responses.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Lysinibacillus sphaericus III(3)7 and Plasmid Vector pMK4: New Challenges in Cloning Platforms. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquisition and especially the maintenance of a plasmid usually brings a fitness cost that reduces the reproductive rate of the bacterial host; for strains like Lysinibacillus sphaericus III(3)7, which possesses important environmental properties, this alteration along with morphological changes and reduced sporulation rates may exert a negative effect on metabolic studies using plasmids as cloning platforms. The aim of this study is to approach the metabolic behavior of pMK4-bearing cells of L. sphaericus III(3)7 through the use of bioinformatic and in vitro analyses. An incompatibility model between the pMK4 vector and a predicted megaplasmid, pBsph, inside III(3)7 cells was constructed based on an incA region. Additionally, in vitro long-term plasmid stability was not found in plasmid-bearing cells. Alignments between replicons, mobile genetic elements and RNA-RNA interactions were assessed, pairwise alignment visualization, graphic models and morphological changes were evaluated by SEM. Metabolite analysis was done through HPLC coupled to a Q-TOF 6545, and electrospray ionization was used, finally, Aedes aegypti and Culex quinquefasciatus larvae were used for larvicidal activity assessment. Results found, a decreased growth rate, spore formation reduction and morphological changes, which supported the idea of metabolic cost exerted by pMK4. An incompatibility between pMK4 and pBsph appears to take place inside L. sphaericus III(3)7 cells, however, further in vitro studies are needed to confirm it.
Collapse
|
9
|
Ogura M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation Regulates ylxR Encoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front Microbiol 2020; 11:590828. [PMID: 33101263 PMCID: PMC7546277 DOI: 10.3389/fmicb.2020.590828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, and these bacteria have several glucose-responsive networks. We proposed new glucose responsive system, which includes protein acetylation and probable translation control through TsaEBD, which is a tRNA modification enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A)-tRNA. The system also includes nucleoid-associated protein YlxR, regulating more than 400 genes including many metabolic genes and the ylxR-containing operon driven by the PylxS promoter is induced by glucose. Thus, transposon mutagenesis was performed for searching regulatory factors for PylxS expression. As a result, ywlE was identified. The McsB kinase phosphorylates arginine (Arg) residues of proteins and the YwlE phosphatase counteracts against McsB through Arg-dephosphorylation. Phosphorylated Arg has been known to function as a tag for ClpCP-dependent protein degradation. The previous analysis identified TsaD as an Arg-phosphorylated protein. Our results showed that the McsB/YwlE system regulates PylxS expression through ClpCP-mediated protein degradation of TsaD. In addition, we observed that glucose induced ywlE expression and repressed mcsB expression. It was concluded that these phenomena would cause glucose induction (GI) of PylxS, based on the Western blot analyses of TsaD-FLAG. These observations and the previous those that many glycolytic enzymes are Arg-phosphorylated suggested that the McsB/YwlE system might be involved in cell growth in glucose-containing medium. We observed that the disruption of mcsB and ywlE resulted in an increase of cell mass and delayed growth, respectively, in semi-synthetic medium. These results provide us broader insights to the physiological roles of the McsB/YwlE system and protein Arg-phosphorylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| |
Collapse
|
10
|
Ogura M, Shindo K, Kanesaki Y. Bacillus subtilis Nucleoid-Associated Protein YlxR Is Involved in Bimodal Expression of the Fructoselysine Utilization Operon ( frlBONMD-yurJ) Promoter. Front Microbiol 2020; 11:2024. [PMID: 32983026 PMCID: PMC7475707 DOI: 10.3389/fmicb.2020.02024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria must survive harsh environmental fluctuations at times and have evolved several strategies. “Collective” behaviors have been identified due to recent progress in single-cell analysis. Since most bacteria exist as single cells, bacterial populations are often considered clonal. However, accumulated evidence suggests this is not the case. Gene expression and protein expression are often not homogeneous, resulting in phenotypic heterogeneity. In extreme cases, this leads to bistability, the existence of two stable states. In many cases, expression of key master regulators is bimodal via positive feedback loops causing bimodal expression of the target genes. We observed bimodal expression of metabolic genes for alternative carbon sources. Expression profiles of the frlBONMD-yurJ operon driven by the frlB promoter (PfrlB), which encodes degradation enzymes and a transporter for amino sugars including fructoselysine, were investigated using transcriptional lacZ and gfp, and translational fluorescence reporter mCherry fusions. Disruption effects of genes encoding CodY, FrlR, RNaseY, and nucleoid-associated protein YlxR, four known regulatory factors for PfrlB, were examined for expression of each fusion construct. Expression of PfrlB-gfp and PfrlB-mCherry, which were located at amyE and its original locus, respectively, was bimodal; and disruption of ylxR resulted in the disappearance of the clear bimodal expression pattern in flow cytometric analyses. This suggested a role for YlxR on the bimodal expression of PfrlB. The data indicated that YlxR acted on the bimodal expression of PfrlB through both transcription and translation. YlxR regulates many genes, including those related to translation, supporting the above notion. Depletion of RNaseY abolished heterogenous expression of transcriptional PfrlB-gfp but not bimodal expression of translational PfrlB-mCherry, suggesting the role of RNaseY in regulation of the operon through mRNA stability control and regulatory mechanism for PfrlB-mCherry at the translational level. Based on these results, we discuss the meaning and possible cause of bimodal PfrlB expression.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
11
|
de Crécy-Lagard V, Jaroch M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol 2020; 29:41-53. [PMID: 32718697 DOI: 10.1016/j.tim.2020.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Modified nucleotides in tRNA are critical components of the translation apparatus, but their importance in the process of translational regulation had until recently been greatly overlooked. Two breakthroughs have recently allowed a fuller understanding of the importance of tRNA modifications in bacterial physiology. One is the identification of the full set of tRNA modification genes in model organisms such as Escherichia coli K12. The second is the improvement of available analytical tools to monitor tRNA modification patterns. The role of tRNA modifications varies greatly with the specific modification within a given tRNA and with the organism studied. The absence of these modifications or reductions can lead to cell death or pleiotropic phenotypes or may have no apparent visible effect. By linking translation through their decoding functions to metabolism through their biosynthetic pathways, tRNA modifications are emerging as important components of the bacterial regulatory toolbox.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|