1
|
Etaka CA, Weller DL, Le T, Hamilton A, Critzer FJ, Strawn LK. Impact of Material Type and Relative Humidity on the Survival of Escherichia coli, Listeria monocytogenes, and Salmonella enterica on Harvest Bags. J Food Prot 2025; 88:100471. [PMID: 40015681 DOI: 10.1016/j.jfp.2025.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Harvest bags, if not properly cleaned and sanitized, can serve as sources of microbial contamination, making it vital to understand pathogen survival on these surfaces to inform sanitation best practices. The study objective was to assess the survival of generic Escherichia coli, Listeria monocytogenes, and Salmonella enterica on harvest bag materials: 100% canvas, nylon, and Cordura. Coupons from each material were inoculated with rifampicin-resistant strains of E. coli or rifampicin-resistant 5-strain cocktails of L. monocytogenes or S. enterica at ca. 7.3 ± 0.1 log CFU/coupon. Coupons were air-dried until the inoculum was visibly dry and held at 22°C under different relative humidity (RH) conditions: 30 or 80% RH for E. coli (90 d) and 55% RH for L. monocytogenes and S. enterica (21 d). E. coli concentration was enumerated at 12 time-points: 0, 1.5, 4, and 8 h, and 1, 2, 3, 7, 14, 30, 60, and 90 d post-inoculation. L. monocytogenes and S. enterica levels were enumerated at 10 time-points: 0, 1, 4, and 8 h, and 1, 2, 3, 7, 14, and 21 d. Coupons were massaged for 60 s with 20 mL of 0.1% peptone and plated in duplicate on selective and non-selective media in triplicate experiments with triplicate replicates (n = 9). Models were fitted to describe bacterial die-off in log CFU/coupon over time. E. coli exhibited a triphasic die-off with a faster rate of die-off on nylon surfaces. S. enterica demonstrated greater die-off on Cordura compared to canvas, and L. monocytogenes followed a biphasic die-off, with no significant difference in survival across the materials. Findings indicate E. coli survival was influenced by RH, time, and material, with the fastest die-off on nylon materials. S. enterica die-off was influenced by material and time with a faster die-off on Cordura. L. monocytogenes exhibited similar die-off on canvas and Cordura. Sanitization of harvest bags is recommended to reduce contamination risks as pathogen survival can be influenced by bag material and environmental conditions.
Collapse
Affiliation(s)
- Cyril A Etaka
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tuan Le
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alexis Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Faith J Critzer
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Burnett AR, Critzer F, Coolong T. Quantification of Escherichia coli Transfer from Plastic Mulch to Field-grown Tomatoes and Bell Peppers. J Food Prot 2025; 88:100458. [PMID: 39884392 DOI: 10.1016/j.jfp.2025.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
In the United States, the Food and Drug Administration (USFDA) prohibits the distribution of fruit that is dropped from the plant and contacts the ground during harvest. This includes fruit which contacts the ground while attached to the plant, called "drooping" fruit. In the Southeastern US, tomato and pepper are trellised and grown on plastic mulch. The objective of this study was to obtain bacterial transfer rates from a nonpathogenic Escherichia coli GFP inoculated on plastic mulch (black and white) to fruit (tomatoes and peppers) that contact the ground by being dropped (at heights of 30, 60, or 120 cm) or by drooping (contact times of 1 h or 24 h) in the field during the summer season in Georgia, USA. Plastic mulch was surface inoculated with E. coli (106 CFU/64 cm2), and after drying, populations were reduced by >2-3 log CFU/64 cm2. Once inoculum was dry, the fruit was either dropped from different heights through a PVC pipe or placed back onto the mulch in its initial resting place. The mean log percent transfer of E. coli from plastic mulch to dropped tomato and pepper fruit was -2.00 to 0.46 (0.01-2.88%). Mean log percent transfer rates of E. coli to drooping fruit were between -0.83 and 0.01 (0.15-1.02%), with no significant differences in transfer within crop types between treatments of plastic mulch color or contact time. Field environmental conditions throughout the experiment such as ambient air temperature, relative humidity, UVAB radiation intensity, and surface temperature of plastic likely affected the rates of bacterial transfer. While other studies have evaluated bacterial survival and transfer from mulch to fruit in a laboratory setting, the present study addresses knowledge gaps in bacterial transfer during drooping and dropping incidents in the field when fruit contacts plastic mulch, providing results that have potential to inform future regulatory guidance for produce harvest and handling.
Collapse
Affiliation(s)
- Autumn R Burnett
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602, USA.
| | - Faith Critzer
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA 30602-2610, USA
| | - Timothy Coolong
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602, USA
| |
Collapse
|
3
|
Kaur A, Yemmireddy V. Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage. Foods 2023; 12:4287. [PMID: 38231743 DOI: 10.3390/foods12234287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
The effect of the pre-growth temperature of bacterial cultures on their subsequent survival kinetics in fresh-cut produce during refrigerated storage was investigated in this study. Three-strain cocktails of Listeria monocytogenes and Salmonella enterica, cultured at different growth temperatures (4, 21, and 37 °C) were inoculated on fresh-cut mixed salad and on individual produce in the mixed salad. The inoculated samples were stored at 4 °C and 80 ± 2% relative humidity (RH) for up to 72 h and the growth, survival, or death kinetics were determined at regular intervals. The results indicate that depending upon the type of pathogen tested, the pre-growth temperature(s) and the type of produce showed a significant (p ≤ 0.05) effect on the survival kinetics. Among the tested produce, mixed salad showed the highest reduction in L. monocytogenes pre-grown at 37 °C (1.33 log CFU/g) followed by red cabbage (0.56 log CFU/g), iceberg lettuce (0.52 log CFU/g), and carrot (-0.62 log CFU/g), after 72 h, respectively. In the case of Salmonella, carrot showed the highest reduction (1.07 log CFU/g for 37 °C pre-grown culture) followed by mixed salad (0.78 log CFU/g for 37 °C pre-grown culture), cabbage (0.76 log CFU/g for 21 °C pre-grown culture), and lettuce (0.65 log CFU/g for 4 °C pre-grown culture), respectively. Among the tested ComBase predictive models, the Baranyi-Roberts model better fitted the experimental data. These findings indicate that the appropriate selection of pre-growth environmental conditions is critical to better understand the kinetics of foodborne pathogens.
Collapse
Affiliation(s)
- Avninder Kaur
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
| | - Veerachandra Yemmireddy
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
4
|
Dhulappanavar GR, Gibson KE. Persistence of Salmonella enterica subsp. enterica ser. Javiana, Listeria monocytogenes, and Listeria innocua in Hydroponic Nutrient Solution. J Food Prot 2023; 86:100154. [PMID: 37640157 DOI: 10.1016/j.jfp.2023.100154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
This study aimed to determine the persistence of Salmonella Javiana, Listeria monocytogenes, and Listeria innocua in nonsterile, hydroponic nutrient solution (NS) at 15, 25, 30, and 37°C over a 21-day period to mimic time from seedling to mature lettuce. Bacteria were inoculated in modified Hoagland's NS at 106 CFU/mL and maintained at 15, 25, 30, and 37°C. Samples were collected at various time points, and bacteria were quantified. A mixed model was used to determine the effect of bacteria type, time (day), and temperature on bacteria concentration (log CFU/mL). The least-squares means were calculated to compare the mean log CFU/mL, and the mean values were compared with Tukey-Kramer honest significant difference test with a significance level of P = 0.05. Statistical analysis indicated that a 3-way interaction effect between temperature, time, and bacteria type had a significant impact on bacterial persistence in NS (P < 0.0001). At all temperatures, S. Javiana persisted in NS throughout the 21-day study period, compared to L. innocua and L. monocytogenes where persistence was limited to between 1 and 14 days. Similarly, decimal reduction values (D-values) of S. Javiana indicated longer persistence in NS than L. innocua and L. monocytogenes at most temperatures. For instance, at 15°C and 25°C, D-values for S. Javiana were estimated at 82 and 26 d, respectively, compared to D-values of 3.6 and ∼3 d for L. monocytogenes. Data indicate that the temperature of NS has a differential effect on the persistence of S. Javiana and Listeria spp. This study furthers the understanding of potential food safety risks associated with hydroponic systems and will contribute to the refinement of further studies to aid in the development of operation-specific risk profiles.
Collapse
Affiliation(s)
- Gayatri R Dhulappanavar
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA.
| |
Collapse
|
5
|
Murphy CM, Hamilton AM, Waterman K, Rock C, Schaffner D, Strawn LK. Sanitizer Type and Contact Time Influence Salmonella Reductions in Preharvest Agricultural Water Used on Virginia Farms. J Food Prot 2023; 86:100110. [PMID: 37268194 DOI: 10.1016/j.jfp.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
No Environmental Protection Agency (EPA) chemical treatments for preharvest agricultural water are currently labeled to reduce human health pathogens. The goal of this study was to examine the efficacy of peracetic acid- (PAA) and chlorine (Cl)-based sanitizers against Salmonella in Virginia irrigation water. Water samples (100 mL) were collected at three time points during the growing season (May, July, September) and inoculated with either the 7-strain EPA/FDA-prescribed cocktail or a 5-strain Salmonella produce-borne outbreak cocktail. Experiments were conducted in triplicate for 288 unique combinations of time point, residual sanitizer concentration (low: PAA, 6 ppm; Cl, 2-4 ppm or high: PAA, 10 ppm; Cl, 10-12 ppm), water type (pond, river), water temperature (12°C, 32°C), and contact time (1, 5, 10 min). Salmonella were enumerated after each treatment combination and reductions were calculated. A log-linear model was used to characterize how treatment combinations influenced Salmonella reductions. Salmonella reductions by PAA and Cl ranged from 0.0 ± 0.1 to 5.6 ± 1.3 log10 CFU/100 mL and 2.1 ± 0.2 to 7.1 ± 0.2 log10 CFU/100 mL, respectively. Physicochemical parameters significantly varied by untreated water type; however, Salmonella reductions did not (p = 0.14), likely due to adjusting the sanitizer amounts needed to achieve the target residual concentrations regardless of source water quality. Significant differences (p < 0.05) in Salmonella reductions were observed for treatment combinations, with sanitizer (Cl > PAA) and contact time (10 > 5 > 1 min) having the greatest effects. The log-linear model also revealed that outbreak strains were more treatment-resistant. Results demonstrate that certain treatment combinations with PAA- and Cl-based sanitizers were effective at reducing Salmonella populations in preharvest agricultural water. Awareness and monitoring of water quality parameters are essential for ensuring adequate dosing for the effective treatment of preharvest agricultural water.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona - Maricopa Agricultural Center, Maricopa, Arizona, USA
| | - Donald Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
6
|
Péloquin L, Goetz C, Jubinville E, Jean J. Protective Effect of Select Bacterial Species Representative of Fresh Produce on Human Norovirus Surrogates Exposed to Disinfecting Pulsed Light. Appl Environ Microbiol 2023; 89:e0004323. [PMID: 37154750 PMCID: PMC10231187 DOI: 10.1128/aem.00043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Contamination of berries and leafy greens with human norovirus (HuNoV) is a major cause of outbreaks of epidemic gastroenteritis worldwide. Using murine norovirus type 1 (MNV-1) and Tulane virus, we studied the possible extension of HuNoV persistence by biofilm-producing epiphytic bacteria on fresh produce. Nine bacterial species frequently found on the surface of berries and leafy greens (Bacillus cereus, Enterobacter cloacae, Escherichia coli, Kocuria kristinae, Lactobacillus plantarum, Pantoea agglomerans, Pseudomonas fluorescens, Raoultella terrigena, and Xanthomonas campestris) were evaluated for the ability to form biofilms in the MBEC Assay Biofilm Inoculator and in 96-well microplates. The biofilm-forming bacteria were further tested for binding MNV-1 and Tulane virus and the ability to protect them against loss of capsid integrity upon exposure to disinfecting pulsed light at a fluence of 11.52 J/cm2. Based on viral reductions, MNV-1 did not benefit from attachment to biofilm whereas Tulane virus was significantly more resistant than the control when attached to biofilms of E. cloacae (P ≤ 0.01), E. coli (P ≤ 0.01), K. kristinae (P ≤ 0.01), P. agglomerans (P ≤ 0.05), or P. fluorescens (P ≤ 0.0001). Enzymatic dispersion of biofilm and microscopic observations suggest that the biofilm matrix composition may contribute to the virus resistance. Our results indicate that direct virus-biofilm interaction protects Tulane virus against disinfecting pulsed light, and that HuNoV on fresh produce therefore might resist such treatment more than suggested by laboratory tests so far. IMPORTANCE Recent studies have shown that bacteria may be involved in the attachment of HuNoV to the surface of fresh produce. Because these foods are difficult to disinfect by conventional methods without compromising product quality, nonthermal nonchemical disinfectants such as pulsed light are being investigated. We seek to understand how HuNoV interacts with epiphytic bacteria, particularly with biofilms formed by bacterial epiphytes, with cells and extracellular polymeric substances, and to determine if it thus escapes inactivation by pulsed light. The results of this study should advance understanding of the effects of epiphytic biofilms on the persistence of HuNoV particle integrity after pulsed light treatment and thus guide the design of novel pathogen control strategies in the food industry.
Collapse
Affiliation(s)
- Laurence Péloquin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Coralie Goetz
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Bombelli A, Araya-Cloutier C, Vincken JP, Abee T, den Besten HMW. Impact of food-relevant conditions and food matrix on the efficacy of prenylated isoflavonoids glabridin and 6,8-diprenylgenistein as potential natural preservatives against Listeria monocytogenes. Int J Food Microbiol 2023; 390:110109. [PMID: 36806890 DOI: 10.1016/j.ijfoodmicro.2023.110109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Prenylated isoflavonoids can be extracted from plants of the Leguminosae/Fabaceae family and have shown remarkable antimicrobial activity against Gram-positive food-borne pathogens, such as Listeria monocytogenes. Promising candidates from this class of compounds are glabridin and 6,8-diprenylgenistein. This research aimed to investigate the potential of glabridin and 6,8-diprenylgenistein as food preservatives against L. monocytogenes. Their antimicrobial activity was tested in vitro at various conditions relevant for food application, such as different temperatures (from 10 °C to 37 °C), pH (5 and 7.2), and in the presence or absence of oxygen. The minimum inhibitory concentrations of glabridin and 6,8-diprenylgenistein in vitro were between 0.8 and 12.5 μg/mL in all tested conditions. Growth inhibitory activities were similar at 10 °C compared to higher temperatures, although bactericidal activities decreased when the temperature decreased. Notably, lower pH (pH 5) increased the growth inhibitory and bactericidal activity of the compounds, especially for 6,8-diprenylgenistein. Furthermore, similar antimicrobial efficacies were shown anaerobically compared to aerobically at the tested conditions. Glabridin showed a more stable inhibitory and bactericidal activity when the temperature decreased compared to 6,8-diprenylgenistein. Therefore, we further determined the antimicrobial efficacy of glabridin against L. monocytogenes growth on fresh-cut cantaloupe at 10 °C. In these conditions, concentrations of glabridin of 50, 100 and 250 μg/g significantly reduced the growth of L. monocytogenes compared to the control, resulting on average in >1 Log CFU/g difference after 4 days compared to the control. Our results further underscored the importance of considering the food matrix when assessing the activity of novel antimicrobials. Overall, this study highlights the potential of prenylated isoflavonoids as naturally derived food preservatives.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Carla Araya-Cloutier
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Cheng Y, Ma X, Franklin T, Yang R, Moraru CI. Mechano-Bactericidal Surfaces: Mechanisms, Nanofabrication, and Prospects for Food Applications. Annu Rev Food Sci Technol 2023; 14:449-472. [PMID: 36972158 DOI: 10.1146/annurev-food-060721-022330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mechano-bactericidal (MB) nanopatterns have the ability to inactivate bacterial cells by rupturing cellular envelopes. Such biocide-free, physicomechanical mechanisms may confer lasting biofilm mitigation capability to various materials encountered in food processing, packaging, and food preparation environments. In this review, we first discuss recent progress on elucidating MB mechanisms, unraveling property-activity relationships, and developing cost-effective and scalable nanofabrication technologies. Next, we evaluate the potential challenges that MB surfaces may face in food-related applications and provide our perspective on the critical research needs and opportunities to facilitate their adoption in the food industry.
Collapse
Affiliation(s)
- Yifan Cheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA;
| | - Xiaojing Ma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Trevor Franklin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
9
|
Chen R, Skeens JW, Wiedmann M, Guariglia-Oropeza V. The efficacy of nisin against Listeria monocytogenes on cold-smoked salmon at natural contamination levels is concentration-dependent and varies by serotype. Front Microbiol 2022; 13:930400. [PMID: 36147859 PMCID: PMC9486479 DOI: 10.3389/fmicb.2022.930400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cold-smoked salmon is a ready-to-eat food product capable of supporting Listeria monocytogenes growth at refrigeration temperatures. While the FDA-approved antimicrobial nisin can be used to mitigate L. monocytogenes contamination, stresses associated with cold-smoked salmon and the associated processing environments may reduce nisin efficacy. A previous study in our laboratory showed that, at high inoculation levels, pre-exposure of L. monocytogenes to sublethal concentrations of quaternary ammonium compounds had an overall detrimental effect on nisin efficacy. The objective of this study was to investigate the impact of nisin concentration and storage temperature on nisin efficacy against L. monocytogenes inoculated on salmon at natural contamination levels. Three L. monocytogenes strains were pre-grown in the presence of sublethal levels of benzalkonium chloride prior to inoculation at ~102 CFU/g on salmon slices that were pre-treated with either 0, 25, or 250 ppm nisin, followed by vacuum-packing and incubation at 4 or 7°C for up to 30 days. L. monocytogenes was enumerated on days 1, 15, and 30 using direct plating and/or most probable number methods. A hurdle model was constructed to describe the odds of complete elimination of L. monocytogenes on salmon and the level of L. monocytogenes when complete elimination was not achieved. Our data showed that (i) nisin efficacy (defined as L. monocytogenes reduction relative to the untreated control) was concentration-dependent with increased efficacy at 250 ppm nisin, and that (ii) 250 ppm nisin treatments led to a reduction in L. monocytogenes prevalence, independent of storage temperature and serotype; this effect of nisin could only be identified since low inoculation levels were used. While lower storage temperatures (i.e., 4°C) yielded lowered absolute L. monocytogenes counts on days 15 and 30 (as compared to 7°C), nisin efficacy did not differ between these two temperatures. Finally, the serotype 1/2b strain was found to be more susceptible to nisin compared with serotype 1/2a and 4b strains on samples incubated at 7°C or treated with 25 ppm nisin. This variation of nisin susceptibility across serotypes, which is affected by both the storage temperature and nisin concentration, needs to be considered while evaluating the efficacy of nisin.
Collapse
|
10
|
Mendes-Oliveira G, Luo Y, Zhou B, Gu G, Teng Z, Bolten S, Park E, Pearlstein D, Turner ER, Millner PD, Nou X. Use of a silver-based sanitizer to accelerate Escherichia coli die-off on fresh-cut lettuce and maintain produce quality during cold storage: Laboratory and pilot-plant scale tests. Food Res Int 2022; 157:111170. [PMID: 35761517 DOI: 10.1016/j.foodres.2022.111170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Outbreaks and product recalls involving romaine and iceberg lettuce are frequently reported in the United States. Novel technologies are needed to inactivate pathogens without compromising product quality and shelf life. In this study, the effects of a process aid composed of silver dihydrogen citrate, glycerin, and lactic acid (SGL) on Escherichia coli and Listeria monocytogenes concentrations on lettuce immediately after washing and during cold storage were evaluated. Sensory and quality attributes of fresh-cut iceberg lettuce were also evaluated. Laboratory results indicated that application of SGL solution for 30 s as a first step in the washing process resulted in a 3.15 log reduction in E. coli O157:H7 immediately after washing. For E. coli O157:H7 a significant difference between SGL treatment and all other treatments was maintained until day 7. On day zero, SGL led to a 2.94 log reduction of L. monocytogenes. However, there was no significant difference between treatments with or without SGL regardless of storage time. Pilot-plant results showed that samples receiving SGL spray followed by chlorinated flume wash exhibited a greater reduction (1.48 log) in nonpathogenic E. coli populations at the end of shelf life than other treatments (p < 0.05). Additional pilot plant tests were conducted to investigate the hypothesis that SGL residues could continue to impact microbial survival on the final washed lettuce. Results show that pathogens introduced subsequent to flume washing of lettuce pretreated with SGL solution were not affected by antimicrobial residues. The final quality and shelf life of flume washed lettuce were also unaffected by pretreatment with SGL. In conclusion, the results of this study demonstrate that this new technology has the potential to accelerate E. coli die-off on fresh-cut lettuce during cold storage and improve product safety, while not affecting quality throughout the shelf life of the finished products.
Collapse
Affiliation(s)
- Gabriella Mendes-Oliveira
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States; Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Bin Zhou
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Zi Teng
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Eunhee Park
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Daniel Pearlstein
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Ellen R Turner
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Patricia D Millner
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States.
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| |
Collapse
|
11
|
Singh A, Yemmireddy V. Pre-Growth Environmental Stresses Affect Foodborne Pathogens Response to Subsequent Chemical Treatments. Microorganisms 2022; 10:microorganisms10040786. [PMID: 35456836 PMCID: PMC9028805 DOI: 10.3390/microorganisms10040786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Foodborne pathogens such as Salmonella, E. coli O157:H7, and Listeria monocytogenes are known to survive under different environmental stresses with an effect on their physiological properties. The purpose of this study was to determine the effect of different environmental stresses on the foodborne pathogens response to subsequent chemical treatments. Three types of pathogens Salmonella, E. coli O157:H7, and Listeria monocytogenes were subjected to different environmental stresses: (i) Desiccation (ii) high salt (iii) low pH, and (iv) temperatures (14, 23, and 37 °C) during their growth. The cells harvested at their early stationary growth phase were subsequently subjected to chlorine (100 or 200 ppm), peracetic acid (40 or 80 ppm), and 0.5% lactic acid treatments. The results showed that pre-growth stress conditions have significant effect on the reduction of tested pathogens depending upon the type of chemical treatment. Salmonella showed the highest sensitivity against all these treatments when compared to E. coli O157:H7 and Listeria monocytogenes. In addition, Listeria monocytogenes showed the highest percentage of sub-lethally injured cells. These findings highlighted the need to consider pre-growth conditions as an important factor for the validation of physical and chemical intervention treatments.
Collapse
Affiliation(s)
- Amandeep Singh
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA;
| | - Veerachandra Yemmireddy
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA;
- Department of Biology, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
- Correspondence: ; Tel.: +1-956-665-7198
| |
Collapse
|
12
|
Bardsley CA, Weller DL, Ingram DT, Chen Y, Oryang D, Rideout SL, Strawn LK. Strain, Soil-Type, Irrigation Regimen, and Poultry Litter Influence Salmonella Survival and Die-off in Agricultural Soils. Front Microbiol 2021; 12:590303. [PMID: 33796083 PMCID: PMC8007860 DOI: 10.3389/fmicb.2021.590303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
The use of untreated biological soil amendments of animal origin (BSAAO) have been identified as one potential mechanism for the dissemination and persistence of Salmonella in the produce growing environment. Data on factors influencing Salmonella concentration in amended soils are therefore needed. The objectives here were to (i) compare die-off between 12 Salmonella strains following inoculation in amended soil and (ii) characterize any significant effects associated with soil-type, irrigation regimen, and amendment on Salmonella survival and die-off. Three greenhouse trials were performed using a randomized complete block design. Each strain (~4 log CFU/g) was homogenized with amended or non-amended sandy-loam or clay-loam soil. Salmonella levels were enumerated in 25 g samples 0, 0.167 (4 h), 1, 2, 4, 7, 10, 14, 21, 28, 56, 84, 112, 168, 210, 252, and 336 days post-inoculation (dpi), or until two consecutive samples were enrichment negative. Regression analysis was performed between strain, soil-type, irrigation, and (i) time to last detect (survival) and (ii) concentration at each time-point (die-off rate). Similar effects of strain, irrigation, soil-type, and amendment were identified using the survival and die-off models. Strain explained up to 18% of the variance in survival, and up to 19% of variance in die-off rate. On average Salmonella survived for 129 days in amended soils, however, Salmonella survived, on average, 30 days longer in clay-loam soils than sandy-loam soils [95% Confidence interval (CI) = 45, 15], with survival time ranging from 84 to 210 days for the individual strains during daily irrigation. When strain-specific associations were investigated using regression trees, S. Javiana and S. Saintpaul were found to survive longer in sandy-loam soil, whereas most of the other strains survived longer in clay-loam soil. Salmonella also survived, on average, 128 days longer when irrigated weekly, compared to daily (CI = 101, 154), and 89 days longer in amended soils, than non-amended soils (CI = 61, 116). Overall, this study provides insight into Salmonella survival following contamination of field soils by BSAAO. Specifically, Salmonella survival may be strain-specific as affected by both soil characteristics and management practices. These data can assist in risk assessment and strain selection for use in challenge and validation studies.
Collapse
Affiliation(s)
- Cameron A. Bardsley
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Daniel L. Weller
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - David T. Ingram
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - David Oryang
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - Steven L. Rideout
- School of Plant and Environmental Sciences, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Laura K. Strawn
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| |
Collapse
|
13
|
Harrand AS, Guariglia-Oropeza V, Skeens J, Kent D, Wiedmann M. Nature versus Nurture: Assessing the Impact of Strain Diversity and Pregrowth Conditions on Salmonella enterica, Escherichia coli, and Listeria Species Growth and Survival on Selected Produce Items. Appl Environ Microbiol 2021; 87:e01925-20. [PMID: 33397695 PMCID: PMC8105001 DOI: 10.1128/aem.01925-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Inoculation studies are important when assessing microbial survival and growth in food products. These studies typically involve the pregrowth of multiple strains of a target pathogen under a single condition; this emphasizes strain diversity. To gain a better understanding of the impacts of strain diversity ("nature") and pregrowth conditions ("nurture") on subsequent bacterial growth in foods, we assessed the growth and survival of Salmonella enterica (n = 5), Escherichia coli (n = 6), and Listeria (n = 5) inoculated onto tomatoes, precut lettuce, and cantaloupe rind, respectively. Pregrowth conditions included (i) 37°C to stationary phase (baseline), (ii) low pH, (iii) high salt, (iv) reduced water activity, (v) log phase, (vi) minimal medium, and (vii) 21°C. Inoculated tomatoes were incubated at 21°C; lettuce and cantaloupe were incubated at 7°C. Bacterial counts were assessed over three phases, including initial reduction (phase 1), change in bacterial numbers over the first 24 h of incubation (phase 2), and change over the 7-day incubation (phase 3). E. coli showed overall decline in counts (<1 log) over the 7-day period, except for a <1-log increase after pregrowth in high salt and to mid-log phase. In contrast, S. enterica and Listeria showed regrowth after an initial reduction. Pregrowth conditions had a substantial and significant effect on all three phases of S. enterica and E. coli population dynamics on inoculated produce, whereas strain did not show a significant effect. For Listeria, both pregrowth conditions and strain affected changes in phase 2 but not phases 1 and 3.IMPORTANCE Our findings suggest that inclusion of multiple pregrowth conditions in inoculation studies can best capture the range of growth and survival patterns expected for Salmonella enterica and Escherichia coli present on produce. This is particularly important for fresh and fresh-cut produce, where stress conditions encountered by pathogens prior to contamination can vary widely, making selection of a typical pregrowth condition virtually impossible. Pathogen growth and survival data generated using multiple pregrowth conditions will allow for more robust microbial risk assessments that account more accurately for uncertainty.
Collapse
Affiliation(s)
| | | | - Jordan Skeens
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - David Kent
- Department of Statistical Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Microbes in Our Food, an Ongoing Problem with New Solutions. Antibiotics (Basel) 2020; 9:antibiotics9090584. [PMID: 32911606 PMCID: PMC7559893 DOI: 10.3390/antibiotics9090584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Despite an increasing number of techniques that are designed to mitigate microbial contamination of food and the resulting food borne disease outbreaks, the United States and many other countries across the world continue to experience impressive numbers of such outbreaks. Microbial contamination can occur during activities that take place in the pre-harvest environment or in the processing facility post-harvest. Current treatments of food that are aimed at reducing bacterial numbers may be only partially effective because of the development of bacterial resistance, the formation of bacterial biofilms, and inactivation of the treatment compound by the food products themselves. This Special Issue will include basic research approaches that are aimed at enhancing our understanding of how contamination occurs throughout the food processing chain, as well as more immediate and applied approaches to the development and use of novel anti-microbials to combat microbes in food. Novel techniques that aim to evaluate the efficacy of novel anti-microbials are included. Overall, we present a broad spectrum of novel approaches to reduce microbial contamination on food at all stages of production.
Collapse
|
15
|
Chen R, Skeens J, Orsi RH, Wiedmann M, Guariglia-Oropeza V. Pre-growth conditions and strain diversity affect nisin treatment efficacy against Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 2020; 333:108793. [PMID: 32763758 DOI: 10.1016/j.ijfoodmicro.2020.108793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes is a human pathogen that is commonly found in environments associated with cold-smoked salmon. Nisin is a natural antimicrobial that can be used as a food preservative. While nisin is active against a number of Gram-positive bacteria, including L. monocytogenes, environmental stresses encountered in cold-smoked salmon processing facilities might affect L. monocytogenes' nisin susceptibility. The objective of this study was to investigate the effect of seafood-relevant pre-growth conditions and L. monocytogenes strain diversity on nisin treatment efficacy on cold-smoked salmon. Six L. monocytogenes strains representing serotypes most commonly associated with cold-smoked salmon (1/2a, 1/2b, and 4b) were initially pre-grown under a number of seafood-relevant conditions and challenged with nisin in growth media modified to represent the characteristics of cold-smoked salmon. The pre-growth conditions with the lowest mean log reduction due to nisin and the highest strain-to-strain variability were selected for experiments on cold-smoked salmon; these included: (i) 4.65% w.p. NaCl ("NaCl"); (ii) pH = 6.1 ("pH"); (iii) 0.5 μg/ml benzalkonium chloride ("Quat"); and a control ("BHI"). Cold-smoked salmon slices with or without nisin were inoculated with L. monocytogenes pre-grown in one of the conditions above, vacuum-packed, and incubated at 7 °C. L. monocytogenes were enumerated on days 1, 15, and 30. A linear mixed effects model was constructed to investigate the effect of pre-growth condition, day in storage, serotype, source of isolation as well as their interactions on nisin efficacy against L. monocytogenes. Compared to pre-growth in "BHI", significant reduction (P < 0.05) in nisin efficacy was induced by pre-growth in "pH" and "Quat" on both days 15 and 30, and by pre-growth in "NaCl" on day 30, indicating a time-dependent cross-protection effect. Additionally, an effect of L. monocytogenes' serotype on the cross-protection to nisin was observed; pre-growth in "pH" significantly reduced nisin efficacy against serotype 1/2a and 4b strains, but not against 1/2b strains. In conclusion, pre-exposure to mildly acidic environment, high salt content, and sublethal concentrations of quaternary ammonium compounds, is likely to provide cross-protection against a subsequent nisin treatment of L. monocytogenes on cold-smoked salmon. Therefore, challenge studies that use pre-growth in "BHI", as well as more susceptible L. monocytogenes strains, may overestimate the efficacy of nisin as a control strategy for cold-smoked salmon.
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Jordan Skeens
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | | |
Collapse
|
16
|
Banach JL, van Bokhorst-van de Veen H, van Overbeek LS, van der Zouwen PS, Zwietering MH, van der Fels-Klerx HJ. Effectiveness of a peracetic acid solution on Escherichia coli reduction during fresh-cut lettuce processing at the laboratory and industrial scales. Int J Food Microbiol 2020; 321:108537. [PMID: 32070904 DOI: 10.1016/j.ijfoodmicro.2020.108537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 01/22/2020] [Indexed: 11/17/2022]
Abstract
Fresh leafy greens like lettuce can be consumed raw and are susceptible to foodborne pathogens if they become contaminated. Recently, the number of reported pathogenic foodborne outbreaks related to leafy greens has increased. Therefore, it is important to try to alleviate the human health burden associated with these outbreaks. Processing of fresh-cut lettuce, including washing, is a step in the supply chain that needs to be well controlled to avoid cross-contamination. Current measures to control the quality of lettuce during washing include the use of chemicals like chlorine; however, questions regarding the safety of chlorine have prompted research for alternative solutions with peracetic acid (PAA). This study evaluates the effectiveness of a PAA (c.a. 75 mg/L) solution on the reduction of a commensal E. coli strain during the washing of fresh-cut lettuce. Experiments were performed at the laboratory scale and validated at the industrial scale. We observed that the use of PAA was not adversely affected by the organic load in the water. The contact time and dose of the PAA showed to be relevant factors, as observed by the approximately 5-log reduction of E. coli in the water. Results showed that once introduced during washing, E. coli remained attached to the lettuce, thus supporting the need to control for pathogenic bacteria earlier in the supply chain (e.g., during primary production) as well as during washing. Moreover, our results showed that the use of PAA during washing did not have an apparent effect on the levels of fluorescent pseudomonads (FP) and total heterotrophic bacteria (THB) in lettuce. Overall, our results at the laboratory and industrial scales confirmed that during the processing of fresh-cut produce, where the accumulation of soil, debris, and other plant exudates can negatively affect washing, the use of a PAA (c.a. 75 mg/L) solution was an effective and safe wash water disinfectant that can potentially be used at the industrial scale.
Collapse
Affiliation(s)
- J L Banach
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands.
| | | | - L S van Overbeek
- Wageningen Plant Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - P S van der Zouwen
- Wageningen Plant Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - M H Zwietering
- Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | | |
Collapse
|
17
|
Gill A, McMahon T, Dussault F, Petronella N. Shiga toxin-producing Escherichia coli survives storage in wheat flour for two years. Food Microbiol 2020; 87:103380. [DOI: 10.1016/j.fm.2019.103380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
|