1
|
Farmakis L, Aslanidou P, Katsou L, Moraiti N. A chromatographic approach for investigating the proliferation ability of native Saccharomyces cerevisiae yeast strains under varying temperatures and ethanol concentrations. FRONTIERS IN FUNGAL BIOLOGY 2025; 6:1542167. [PMID: 40444057 PMCID: PMC12120852 DOI: 10.3389/ffunb.2025.1542167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/14/2025] [Indexed: 06/02/2025]
Abstract
Native yeast strains have been proved to be of great importance for food industry. In the present work, two different Saccharomyces cerevisiae native yeast strains isolated from the must from Moschofilero and Agiorgitiko varieties, respectively, were studied in order to estimate the influence of temperature and ethanol concentration on their proliferation ability via asymmetric flow field-flow fractionation (AsFlFFF) technique. The growth rate of the yeast strains, was directly linked to the biomass production under these conditions and was finally investigated via the ability of AsFlFFF to separate particles according to their size. The experimental results showed that the native yeast Saccharomyces cerevisiae from the must of the Moschofilero variety has an ideal growth temperature of 15°C in the absence of alcohol but exhibits low resistance to ethanol. In contrast, yeasts from the Agiorgitiko variety exhibit resistance to 10% v/v ethanol and remain active for a longer period of time. The ability of these strains to grow under these conditions is a strong indication that they can be used as starter cultures in winemaking to improve the organoleptic characteristics of the produced wines. Yeasts from Moschofilero are suitable for starting fermentation under normal conditions, while yeasts from Agiorgitiko can be used both as starter yeasts and in ethanol environments. This study shows also that the asymmetric flow field-flow fractionation technique can be successfully used to monitor yeast growth under different experimental conditions.
Collapse
Affiliation(s)
- Lambros Farmakis
- Laboratory of Physicochemistry, Instrumental Analysis and (Bio)Chemistry of Foods, Department of Food Science and Technology, University of the Peloponnese, Kalamata, Greece
| | | | | | | |
Collapse
|
2
|
El Dana F, David V, Hallal MA, Tourdot-Maréchal R, Hayar S, Colosio MC, Alexandre H. Metschnikowia pulcherrima and Lachancea thermotolerans Killer Toxins: Contribution to Must Bioprotection. Foods 2025; 14:1462. [PMID: 40361544 PMCID: PMC12071733 DOI: 10.3390/foods14091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The spoilage of wine caused by Brettanomyces bruxellensis and Hanseniaspora uvarum poses a significant challenge for winemakers, necessitating the development of effective and reliable strategies to control the growth of these yeasts, such as grape must bioprotection. Despite evidence that certain microorganisms can inhibit the growth of Brettanomyces bruxellensis and Hanseniaspora uvarum, the specific mechanisms driving this inhibition remain unclear. The primary objective of this study is to elucidate the underlying mechanisms responsible for this inhibitory effect. We analyzed one Metschnikowia pulcherrima (Mp2) and two Lachancea thermotolerans (Lt29 and Lt45) strains, all of which demonstrated significant killing and inhibitory effects on Brettanomyces bruxellensis (B1 and B250) and Hanseniaspora uvarum (Hu3137) in synthetic must at pH 3.5 and 22 °C. The effectiveness of these two strains exhibited varying inhibition kinetics. The strains were monitored for growth and metabolite production (L-lactic acid, ethanol, and acetic acid) in both single and co-cultures. The low levels of these metabolites did not account for the observed bioprotective effect, indicating a different mechanism at play, especially given the different growth profiles observed with added L-lactic acid and ethanol compared to direct bioprotectant addition. Following the production, purification, and quantification of killer toxins, different concentrations of toxins were tested, showing that the semi-purified Mp2Kt, Lt29Kt, and Lt45Kt toxins controlled the growth of both spoilage yeasts in a dose-dependent manner. These bioprotectant strains also showed compatibility with Saccharomyces cerevisiae in co-cultures, suggesting their potential use alongside commercial starter cultures.
Collapse
Affiliation(s)
- Fatima El Dana
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, France; (F.E.D.); (V.D.); (R.T.-M.)
- Doctoral School of Science and Technology, Platform for Research and Analysis in Environmental Science (EDST-PRASE), Lebanese University, Rafik Hariri Campus, Hadat-Baabda 1003, Lebanon;
| | - Vanessa David
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, France; (F.E.D.); (V.D.); (R.T.-M.)
| | - Mohammad Ali Hallal
- Department of Plant Protection, Faculty of Agronomy, Lebanese University, Dekwaneh-Matn 90775, Lebanon;
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, France; (F.E.D.); (V.D.); (R.T.-M.)
| | - Salem Hayar
- Doctoral School of Science and Technology, Platform for Research and Analysis in Environmental Science (EDST-PRASE), Lebanese University, Rafik Hariri Campus, Hadat-Baabda 1003, Lebanon;
- Department of Plant Protection, Faculty of Agronomy, Lebanese University, Dekwaneh-Matn 90775, Lebanon;
| | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, France; (F.E.D.); (V.D.); (R.T.-M.)
| |
Collapse
|
3
|
Muñoz-Castells R, Modesti M, Moreno-García J, Catini A, Capuano R, Di Natale C, Bellincontro A, Moreno J. Application of an Electronic Nose to the Prediction of Odorant Series in Wines Obtained with Saccharomyces or Non- Saccharomyces Yeast Strains. Molecules 2025; 30:1584. [PMID: 40286168 PMCID: PMC11990477 DOI: 10.3390/molecules30071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Electronic noses (E-noses) have become powerful tools for the rapid and cost-effective differentiation of wines, providing valuable information for the comprehensive evaluation of aroma patterns. However, they need to be trained and validated using classical analytical techniques, such as gas chromatography coupled with mass spectrometry, which accurately identify the volatile compounds in wine. In this study, five low-ethanol wines with distinctive sensory profiles-produced using Saccharomyces and non-Saccharomyces yeasts and tailored to modern consumer preferences-were analyzed to validate the E-nose. A total of 57 volatile compounds were quantified, 27 of which had an Odor Activity Value (OAV) over 0.2. The content in volatiles, grouped into 11 odorant series according to their odor descriptors, along with the data provided by 12 E-nose sensors, underwent advanced statistical treatments to identify relationships between both data matrices. Partial least squares discriminant analysis (PLS-DA) applied to the data from the 12 E-nose sensors revealed well-defined clustering patterns and produced a model that explained approximately 92% of the observed variability. In addition, a principal component regression (PCR) model was developed to assess the ability of the E-nose to non-destructively predict odorant series in wine. The synergy between the volatile compound profiles and the pattern recognition capability of the E-nose, as captured by PLS-DA, enables a detailed characterization of wine aromas. In addition, predictive models that integrate data from gas chromatography, flame ionization detection, and mass spectrometry (GC-FID/GC-MSD) with the electronic nose demonstrating a promising approach for a rapid and accurate odor series prediction, thereby increasing the efficiency of wine aroma analysis.
Collapse
Affiliation(s)
- Raquel Muñoz-Castells
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| | - Margherita Modesti
- Department for Innovation of Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Andrea Bellincontro
- Department for Innovation of Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| |
Collapse
|
4
|
Filippousi ME, Chalvantzi I, Mallouchos A, Marmaras I, Banilas G, Nisiotou A. The Use of Hanseniaspora opuntiae to Improve 'Sideritis' Wine Quality, a Late-Ripening Greek Grape Variety. Foods 2024; 13:1061. [PMID: 38611364 PMCID: PMC11011255 DOI: 10.3390/foods13071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In view of climate change and the increasingly antagonistic wine market, the exploitation of native genetic resources is revisited in relation to sustainable wine production. 'Sideritis' is a late-ripening Greek grape variety, which is quite promising for counteracting wine quality issues associated with the annual temperature rise. The aim of this study was to improve the quality and to enhance the aroma of 'Sideritis' wine through the use of native yeasts. To improve vinification, Hanseniaspora opuntiae L1 was used along with Saccharomyces cerevisiae W7 in mixed fermentations (SQ). The addition of H. οpuntiae significantly altered the chemical profile of the wine compared to the single-inoculated fermentations with W7 (IS). H. opuntiae increased all the acetate esters, except for hexyl acetate and (Z)-3-hexen-1-ol acetate. The concentration of 2-phenylethyl acetate, which imparts flowery and sweet notes, exhibited a 2.6-fold increase in SQ as compared to IS wines. SQ also showed higher levels in several ethyl esters, including ethyl butyrate, ethyl heptanoate and ethyl 7-octenoate, which are associated with fruity notes compared to IS. H. opuntiae produced citronellol, a terpene associated with rose and green notes, and increased the overall acceptance of the wine. Present results are thus quite promising for improving 'Sideritis' wine quality towards a sustainable wine production in Greece in view of global warming.
Collapse
Affiliation(s)
- Maria-Evangelia Filippousi
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Dimitra”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece; (M.-E.F.); (I.C.); (I.M.)
| | - Ioanna Chalvantzi
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Dimitra”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece; (M.-E.F.); (I.C.); (I.M.)
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Spyridonos 28, 12243 Athens, Greece;
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Ioannis Marmaras
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Dimitra”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece; (M.-E.F.); (I.C.); (I.M.)
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Spyridonos 28, 12243 Athens, Greece;
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Dimitra”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece; (M.-E.F.); (I.C.); (I.M.)
| |
Collapse
|
5
|
Navarrete-Bolaños JL, Serrato-Joya O. A novel strategy to construct multi-strain starter cultures: an insight to evolve from natural to directed fermentation. Prep Biochem Biotechnol 2023; 53:1199-1209. [PMID: 36799653 DOI: 10.1080/10826068.2023.2177870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Some biotechnological strategies have succeeded in the attempt to imitate natural fermentation, and bioprocesses have been efficiently designed when the product is the result of a unique biological reaction. However, when the process requires more than one biological reaction, few bioprocesses have been successfully designed because the available tools to construct multi-strain starter cultures are not yet well defined. In this work, a novel experimental strategy to construct multi-strain starter cultures with selected native microorganisms from natural fermentation is proposed. The strategy analyses, selects, and defines the number and proportion of each strain that should form a starter culture to be used in directed fermentations. It was applied to evolve natural fermentation to directed fermentation in distilled agave production. The results showed that a starter culture integrated by Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum in proportions of 35, 32, and 33%, respectively, allows obtaining fermented agave juice containing a 2.1% alcohol yield and a distilled product with a broad profile of aromatic compounds. Hence, the results show, for the first time, a tool that addresses the technical challenge for multi-strain starter culture construction, offering the possibility of preserving the typicity and genuineness of the original traditional product.
Collapse
Affiliation(s)
- J L Navarrete-Bolaños
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| | - O Serrato-Joya
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| |
Collapse
|
6
|
Development of two-level Design of Experiments for the optimization of a HS-SPME-GC-MS method to study Greek monovarietal PDO and PGI wines. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
A Versatile Toolset for Genetic Manipulation of the Wine Yeast Hanseniaspora uvarum. Int J Mol Sci 2023; 24:ijms24031859. [PMID: 36768181 PMCID: PMC9915424 DOI: 10.3390/ijms24031859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Hanseniaspora uvarum is an ascomycetous yeast that frequently dominates the population in the first two days of wine fermentations. It contributes to the production of many beneficial as well as detrimental aroma compounds. While the genome sequence of the diploid type strain DSM 2768 has been largely elucidated, transformation by electroporation was only recently achieved. We here provide an elaborate toolset for the genetic manipulation of this yeast. A chromosomal replication origin was isolated and used for the construction of episomal, self-replicating cloning vectors. Moreover, homozygous auxotrophic deletion markers (Huura3, Huhis3, Huleu2, Huade2) have been obtained in the diploid genome as future recipients and a proof of principle for the application of PCR-based one-step gene deletion strategies. Besides a hygromycin resistance cassette, a kanamycin resistance gene was established as a dominant marker for selection on G418. Recyclable deletion cassettes flanked by loxP-sites and the corresponding Cre-recombinase expression vectors were tailored. Moreover, we report on a chemical transformation procedure with the use of freeze-competent cells. Together, these techniques and constructs pave the way for efficient and targeted manipulations of H. uvarum.
Collapse
|
8
|
López-Enríquez L, Vila-Crespo J, Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V. Screening and Enzymatic Evaluation of Saccharomyces cerevisiae Populations from Spontaneous Fermentation of Organic Verdejo Wines. Foods 2022; 11:3448. [PMID: 36360060 PMCID: PMC9656934 DOI: 10.3390/foods11213448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
Microbial populations in spontaneous winemaking contribute to the distinctiveness and quality of the wines. In this study, molecular methods were applied to 484 isolated yeasts to survey the diversity of the Saccharomyces cerevisiae population in spontaneous fermentations of organic Verdejo grapes. Identification was carried out at strain level for samples from different vineyards correct.and stages of the winemaking process over the course of two vintages, establishing 54 different strains. The number of isolates belonging to each strain was not homogeneous, as two predominant strains represented more than half of the isolates independent of vineyard or vintage. Regarding the richness and abundance, differences among the stages of fermentation were confirmed, finding the highest diversity values in racked must and in the end of fermentation stages. Dissimilarity in S. cerevisiae communities was found among vineyards and vintages, distinguishing representative groups of isolates for each of the populations analysed. These results highlight the effect of vineyard and vintage on yeast communities as well as the presence of singular strains in populations of yeasts. Oenologically relevant enzymatic activities, β-lyase, protease and β-glucanase, were detected in 83.9%, 96.8% and 38.7% of the isolates, respectively, which may be of interest for potential future studies.
Collapse
Affiliation(s)
- Lorena López-Enríquez
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Josefina Vila-Crespo
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - José Manuel Rodríguez-Nogales
- Área de Tecnología de los Alimentos, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Encarnación Fernández-Fernández
- Área de Tecnología de los Alimentos, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Violeta Ruipérez
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| |
Collapse
|
9
|
Evaluation of Different Molecular Markers for Genotyping Non-Saccharomyces Wine Yeast Species. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wine quality is determined by the particular yeast strains prevailing at various stages of fermentation. Therefore, the ability to make an easy, fast, and unambiguous discrimination of yeasts at the strain level is of great importance. Here, the tandem repeat-tRNA (TRtRNA) method with the 5GAC or ISSR-MB primer sets and random amplified polymorphic DNA (RAPD) analysis with (GTG)3, R5, and RF2 oligonucleotides were tested on various non-Saccharomyces wine yeast species. The TRtRNA-PCR employing ISSR-MB showed the highest capacity in discriminating Lachancea thermotolerans and Metschnikowia pulcherrima isolates. RAPD with RF2 was the most efficient method in resolving Starmerella bacillaris isolates, although it produced few polymorphic bands. RAPD with R5 showed the highest capacity to discriminate among the Issatchenkia orientalis, Hanseniaspora guilliermondii, and Pichia anomala isolates. RAPD with either R5 or RF2 exhibited the highest ability to discriminate among the Torulaspora delbrueckii isolates. RAPD with (GTG)3 was the most discriminating method for the H. uvarum isolates. Here we concluded that both TRtRNA-PCR and RAPD-PCR offer rapid means for typing non-Saccharomyces species. However, each method performs better for a given species when paired with a particular primer set. The present results can be useful in wine research for the fast fingerprinting of non-Saccharomyces yeasts.
Collapse
|
10
|
Karabegović I, Malićanin M, Popović N, Stamenković Stojanović S, Lazić M, Stanojević J, Danilović B. Native Non- Saccharomyces Yeasts as a Tool to Produce Distinctive and Diverse Tamjanika Grape Wines. Foods 2022; 11:foods11131935. [PMID: 35804749 PMCID: PMC9266009 DOI: 10.3390/foods11131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The enological potential of two previously characterized indigenous yeast isolates, Hanseniaspora uvarum S-2 and Candida famata WB-1, in pure and sequential inoculation with commercial yeast Saccharomyces cerevisiae QA23 were analyzed in industrial-scale vinification of the grape variety Tamjanika. Their contribution to the quality and aroma profile was investigated by quantifying volatile compounds and wine sensory evaluation. Both yeast isolates were able to complete alcoholic fermentation, to reduce ethanol concentration up to 1.06% v/v (in monoculture) in comparation to S. cerevisiae QA23, and to enhance aroma and sensory profile. Based on calculated odor activity values (OAV), p-cymene, ethyl hexanoate, ethyl octanoate, and ethyl decanoate were the major aroma volatile compounds in all Tamjanika wine samples. Analyzed yeast strains significantly affected relative contribution of volatile compounds and can be considered responsible for the differences and uniqueness of the obtained wine samples. Besides confirmation of good enological and fermentative characteristics, selected isolates can be characterized as high ester-producing strains with potential to enhance the floral and fruity aromas of wine. The present study represents a further step toward the use of indigenous yeast isolates at industrial-scale fermentation in order to ensure the regional signature of Tamjanika wine.
Collapse
Affiliation(s)
- Ivana Karabegović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
- Correspondence:
| | - Marko Malićanin
- Faculty of Agriculture, University of Niš, Kosančićeva 4, 37000 Kruševac, Serbia;
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Sandra Stamenković Stojanović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Miodrag Lazić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Jelena Stanojević
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| |
Collapse
|
11
|
Liu A, Yan X, Shang H, Ji C, Zhang S, Liang H, Chen Y, Lin X. Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish. Foods 2022; 11:foods11131932. [PMID: 35804748 PMCID: PMC9265898 DOI: 10.3390/foods11131932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 01/31/2023] Open
Abstract
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future.
Collapse
Affiliation(s)
- Aoxue Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Hao Shang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, 10095 Turin, Italy
- Correspondence: ; Tel.: +86-0411-86318675; Fax: +86-0411-86318655
| |
Collapse
|
12
|
Impact of Lachancea thermotolerans on Chemical Composition and Sensory Profiles of Viognier Wines. J Fungi (Basel) 2022; 8:jof8050474. [PMID: 35628730 PMCID: PMC9146010 DOI: 10.3390/jof8050474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Viognier is a warm climate grape variety prone to loss of acidity and accumulation of excessive sugars. The yeast Lachancea thermotolerans can improve the stability and balance of such wines due to the partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in co-inoculations and sequential inoculations with Saccharomyces cerevisiae in high sugar/pH Viognier fermentations. The results highlighted the dichotomy between the non-acidified and the bio-acidified L. thermotolerans treatments, with either comparable or up to 0.5 units lower pH relative to the S. cerevisiae control. Significant differences were detected in a range of flavour-active yeast volatile metabolites. The perceived acidity mirrored the modulations in wine pH/TA, as confirmed via “Rate-All-That-Apply” sensory analysis. Despite major variations in the volatile composition and acidity alike, the varietal aromatic expression (i.e., stone fruit aroma/flavour) remained conserved between the treatments.
Collapse
|
13
|
Belessi CE, Chalvantzi I, Marmaras I, Nisiotou A. The effect of vine variety and vintage on wine yeast community structure of grapes and ferments. J Appl Microbiol 2022; 132:3672-3684. [PMID: 35113470 DOI: 10.1111/jam.15471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
AIMS The yeast community structure associated with grapes is an essential part of the wine-growing chain with a significant effect on wine quality. The aim of the present study was to evaluate the effect of the varietal factor on the yeast community assembly on grapes and during must fermentation. METHODS AND RESULTS We analysed the wine yeast populations associated with four different grape varieties from the Greek national collection vineyard of Lykovryssi. The vintage effect was also considered by sampling the grapes for two consecutive years. Fourteen yeast species were recovered and genotyped to distinct subpopulations. A relatively stable yeast community structure was detected across vintages, with Hanseniaspora guilliermondii being the core species of the vineyard under study. The detected species subpopulations shared a relatively high genetic similarity with several genotypes persisting across vintages. CONCLUSIONS It was shown that different grape cultivars were associated with distinct yeast communities, pointing to their possible implication on wine chemical diversity. SIGNIFICANCE AND IMPACT OF THE STUDY Present findings show that the varietal factor is an important sharpener of the vineyard-associated wine yeast community, which may interfere with the organoleptic profile of the resulting wines.
Collapse
Affiliation(s)
- C-E Belessi
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - I Chalvantzi
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - I Marmaras
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - A Nisiotou
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| |
Collapse
|
14
|
Zilelidou EA, Nisiotou A. Understanding Wine through Yeast Interactions. Microorganisms 2021; 9:microorganisms9081620. [PMID: 34442699 PMCID: PMC8399628 DOI: 10.3390/microorganisms9081620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Wine is a product of microbial activities and microbe–microbe interactions. Yeasts are the principal microorganisms responsible for the evolution and fulfillment of alcoholic fermentation. Several species and strains coexist and interact with their environment and with each other during the fermentation course. Yeast–yeast interactions occur even from the early stages of fermentation, determining yeast community structure and dynamics during the process. Different types of microbial interactions (e.g., mutualism and commensalism or competition and amensalism) may exert positive or negative effects, respectively, on yeast populations. Interactions are intimately linked to yeast metabolic activities that influence the wine analytical profile and shape the wine character. In this context, much attention has been given during the last years to the interactions between Saccharomyces cerevisiae (SC) and non-Saccharomyces (NS) yeast species with respect to their metabolic contribution to wine quality. Yet, there is still a significant lack of knowledge on the interaction mechanisms modulating yeast behavior during mixed culture fermentation, while much less is known about the interactions between the various NS species or between SC and Saccharomyces non-cerevisiae (SNC) yeasts. There is still much to learn about their metabolic footprints and the genetic mechanisms that alter yeast community equilibrium in favor of one species or another. Gaining deeper insights on yeast interactions in the grape–wine ecosystem sets the grounds for understanding the rules underlying the function of the wine microbial system and provides means to better control and improve oenological practices.
Collapse
|
15
|
Chalvantzi I, Banilas G, Tassou C, Nisiotou A. Biogeographical Regionalization of Wine Yeast Communities in Greece and Environmental Drivers of Species Distribution at a Local Scale. Front Microbiol 2021; 12:705001. [PMID: 34276637 PMCID: PMC8278314 DOI: 10.3389/fmicb.2021.705001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Recent research has expanded our understanding on vineyard-associated fungal community assembly, suggesting non-random distribution and implicating regional differences in the wine terroir effect. Here, we focused on the culturable fraction of the fungal community that resides on grapes and determine wine quality, the so-called wine yeast populations. We aimed to analyze local-scale yeast community assemblages and to test whether the hypothesis of biogeographical patterns also applies to wine yeasts in particular. Surveying 34 vineyards across four main viticultural zones in Greece showed significant trends in vineyard-specific patterns. At a local scale, viticultural regions were also linked to distinct yeast community compositions. Importantly, major yeast populations directly related to wine fermentation contributed significantly to the delimitation of regions, highlighting their potential influence on the regionality of wine characteristics. In terms of the microbial terroir influence, yeast communities within an area were temporarily stable, which is critical for the regional character of the wine. Community structure could be explained only partially by environmental features. Maximum temperature, elevation, and net precipitation were the highest correlated variables with the yeast community biogeographic patterns. Finally, we also showed that certain environmental factors may drive the population size of specific yeast populations. The present results indicate that the wine yeast community has a geographical character at local scale, which is an important feature of the microbial terroir concept and thus for the wine industry.
Collapse
Affiliation(s)
- Ioanna Chalvantzi
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece.,Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Chrysoula Tassou
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece
| | - Aspasia Nisiotou
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece
| |
Collapse
|
16
|
Dutra-Silva L, Pereira GE, Batista LR, Matteoli FP. Fungal diversity and occurrence of mycotoxin producing fungi in tropical vineyards. World J Microbiol Biotechnol 2021; 37:112. [PMID: 34081209 DOI: 10.1007/s11274-021-03081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Grapevine cultivars are distributed worldwide, nevertheless the fermentation of its grape berries renders distinct wine products that are highly associated to the local fungal community. Despite the symbiotic association between wine and the fungal metabolism, impacting both the terroir and mycotoxin production, few studies have explored the vineyard ecosystem fungal community using both molecular marker sequencing and mycotoxin production assessment. In this study, we investigated the fungal community of three grapevine cultivars (Vitis vinifera L.) in two tropical vineyards. Illumina MiSeq sequencing was performed on two biocompartments: grape berries (GB) and grapevine soil (GS); yielding a total of 578,495 fungal internal transcribed spacer 1 reads, which were used for taxonomic classification. GB and GS fungal communities were mainly constituted by Ascomycota phylum. GS harbors a significant richer and more diverse fungal community than GB. Among GB samples, Syrah grape berries exclusively shared fungal community included wine-associated yeasts (e.g. Saccharomycopsis vini) that may play key roles in wine terroir. Mycotoxin production assessment revealed the high potential of Aspergillus section Flavi and Penicillium section Citrina isolates to produce aflatoxin B1-B2 and citrinin, respectively. This is the first study to employ next-generation sequencing to investigate vineyard associated fungal community in Brazil. Our findings provide valuable insights on the available tools for fungal ecology assessment applied to food products emphasizing the coexistence between classical and molecular tools.
Collapse
Affiliation(s)
- Lorena Dutra-Silva
- Department of Food Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Giuliano E Pereira
- Brazilian Agricultural Research Corporation/Embrapa Grape & Wine, Bento Gonçalves, RS, Brazil
| | | | - Filipe P Matteoli
- Department of Soil Science, Luiz de Queiroz College of Agriculture, Piracicaba, SP, Brazil.
| |
Collapse
|
17
|
Hranilovic A, Albertin W, Capone DL, Gallo A, Grbin PR, Danner L, Bastian SEP, Masneuf-Pomarede I, Coulon J, Bely M, Jiranek V. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem 2021; 349:129015. [PMID: 33545601 DOI: 10.1016/j.foodchem.2021.129015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce 'fresher' wines with lower ethanol content and improved flavour/balance.
Collapse
Affiliation(s)
- Ana Hranilovic
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Warren Albertin
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; ENSCBP, Bordeaux INP, 33600 Pessac, France.
| | - Dimitra Liacopoulos Capone
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Adelaide Gallo
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Paul R Grbin
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Lukas Danner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Susan E P Bastian
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Isabelle Masneuf-Pomarede
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Bordeaux Sciences Agro, 33170 Gradignan, France.
| | | | - Marina Bely
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France.
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| |
Collapse
|
18
|
Nanou E, Mavridou E, Milienos FS, Papadopoulos G, Tempère S, Kotseridis Y. Odor Characterization of White Wines Produced from Indigenous Greek Grape Varieties Using the Frequency of Attribute Citation Method with Trained Assessors. Foods 2020; 9:E1396. [PMID: 33023113 PMCID: PMC7600498 DOI: 10.3390/foods9101396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to investigate the sensory aroma profiles of white wines of the indigenous Greek grape varieties Assyrtiko, Malagousia, Moschofilero, and Roditis. Twenty-three panelists evaluated 17 wines of the aforementioned varieties using the frequency of attribute citation method. Three indices were calculated to assess panel performance in terms of reproducibility. Correspondence analysis and cluster analysis were employed to investigate the sensory space of the wines. Samples of the Roditis variety were characterized mainly by Banana and Vanilla odors; Assyrtiko samples had Earthy, Mushroom, and Nutty odors, as well as Lemon and Honey for some of the samples. Malagousia wines were described as having Lemon, Grapefruit, and Citrus blossom character, and they shared some descriptors with Assyrtiko wines, such as Mushroom and Earthy, and some with Moschofilero samples, i.e., floral and citrus notes. All Moschofilero wines exhibited a floral odor profile: specifically, Rose, Jasmine, or more Citrus blossom-like. Moreover, some Moschofilero samples also revealed a Grapefruit, Lemon, and/or Earthy character, while others expressed Honey notes. In conclusion, despite common characteristics found within varieties, some samples of different varieties exhibited overlapping profiles, and in some cases, samples of the same variety were quite different from each other.
Collapse
Affiliation(s)
- Evangelia Nanou
- Laboratory of Oenology & Alcoholic Drinks (LEAD), Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.N.); (E.M.)
| | - Emorfili Mavridou
- Laboratory of Oenology & Alcoholic Drinks (LEAD), Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.N.); (E.M.)
| | - Fotios S. Milienos
- Department of Sociology, Panteion University of Social and Political Sciences, 136 Syngrou Avenue, 17671 Athens, Greece;
| | - Georgios Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Sophie Tempère
- Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon, France;
| | - Yorgos Kotseridis
- Laboratory of Oenology & Alcoholic Drinks (LEAD), Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.N.); (E.M.)
| |
Collapse
|
19
|
Dynamic of Lachancea thermotolerans Population in Monoculture and Mixed Fermentations: Impact on Wine Characteristics. BEVERAGES 2020. [DOI: 10.3390/beverages6020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lachancea thermotolerans is a non-Saccharomyces yeast appreciated for its potential of acidification due to the production of lactic acid; however, this species also synthetizes other metabolites that modulate organoleptic wine properties. The aim of this study was to evaluate the strain L. thermotolerans Lt93 to ferment ‘Treixadura’ and ‘Mencía’ musts and its impact on yeast population dynamics and wine characteristics. Fermentations using monocultures of L. thermotolerans Lt93 and S. cerevisiae strains, sequential inoculation and spontaneous process were performed. The dynamic of yeast population and wine composition were analyzed following standard methodology. L. thermotolerans Lt93 was unable to overgrow wild yeast population in ‘Treixadura’ white must; however, with ‘Mencía’ red must, Lt93 was the predominant yeast at the beginning of fermentation and remained at high frequency until the end. Lt93 Treixadura wines had slightly higher acidity and higher content of esters and acids than ScXG3 wines. Lt93 Mencía wines presented higher acidity (10.1 g/L) and 0.8% (v/v) lower ethanol content than Sc71B wines. The content of esters and fatty acids was 3.3 and 4.0 times lower, respectively, in Lt93 than in Sc71B Mencía wines. It was possible to increase wine acidity and modulate the chemical wine profile by using Lt93.
Collapse
|
20
|
Molecular Characterization and Enological Potential of A High Lactic Acid-Producing Lachancea thermotolerans Vineyard Strain. Foods 2020; 9:foods9050595. [PMID: 32392718 PMCID: PMC7278797 DOI: 10.3390/foods9050595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
Lactic acid production is an important feature of the yeast Lachancea thermotolerans that has gained increasing interest in winemaking. In particular, in light of climate change, the biological acidification and ethanol reduction by the use of selected yeast strains may counteract the effect of global warming in wines. Here, the enological potential of a high lactate-producing L. thermotolerans strain (P-HO1) in mixed fermentations with S. cerevisiae was examined. Among the different inoculation schemes evaluated, the most successful implantation of L. thermotolerans was accomplished by sequential inoculation of S. cerevisiae, i.e., at 1% vol. ethanol. P-HO1produced the highest levels of lactic acid ever recorded in mixed fermentations (10.4 g/L), increasing thereby the acidity and reducing ethanol by 1.6% vol. L. thermotolerans was also associated with increases in ethyl isobutyrate (strawberry aroma), free SO2, organoleptically perceived citric nuances and aftertaste. To start uncovering the molecular mechanisms of lactate biosynthesis in L. thermotolerans, the relative expressions of the three lactate dehydrogenase (LDH) paralogous genes, which encode the key enzyme for lactate biosynthesis, along with the alcohol dehydrogenase paralogs (ADHs) were determined. Present results point to the possible implication of LDH2, but not of other LDH or ADH genes, in the high production of lactic acid in certain strains at the expense of ethanol. Taken together, the important enological features of P-HO1 highlighted here, and potentially of other L. thermotolerans strains, indicate its great importance in modern winemaking, particularly in the light of the upcoming climate change and its consequences in the grape/wine system.
Collapse
|
21
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
22
|
Lappa IK, Kachrimanidou V, Pateraki C, Koulougliotis D, Eriotou E, Kopsahelis N. Indigenous yeasts: emerging trends and challenges in winemaking. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Zhang Q, Li H, Sun X, Huang W, Zhan J. Exploitation of Indigenous Wine Yeasts from Spontaneously Fermenting Grape must and Vineyard Soil in Beijing, China. EFOOD 2020. [DOI: 10.2991/efood.k.200731.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|