1
|
Abdullah M, Kadivella M, Sharma R, Baig MS, Faisal SM, Azam S. Identification of virulence genes and clade-specific markers through pan-genomic analysis of Leptospira. BMC Microbiol 2025; 25:248. [PMID: 40287647 PMCID: PMC12032809 DOI: 10.1186/s12866-025-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/29/2025] [Indexed: 04/29/2025] Open
Abstract
Leptospirosis is an emerging zoonotic and neglected disease across the world causing huge loss of life and economy. In this study, we did whole genome sequencing of one Leptospira isolate and a comparative genomic analysis with 69 other species of Leptospira available in RefSeq database provided insight into taxonomic and evolutionary relationship between species. AAI and whole genome based phylogenomic analysis established 3 clusters of Leptospira i.e. pathogenic, intermediate and saprophytic correlating with level of virulence of species. Leptospira has large closed core genome of 1038 genes and an open pan genome with 20,822 genes. The mobilome related genes were found mainly in pan-genome of pathogenic clade. A total of 498 genes have been identified as virulomes, with 329 virulent genes exhibiting presence/absence in various Leptospira species contributing to each species specific virulence profile. The hierarchical clustering of the congregated pathogenic genes yielded five groups, each with a distinct pattern of predominant genes that were either unique or common among clades, indicating lineage uniqueness. Most of the virulent gene pool identified were significantly enriched in COG functional categories of Nucleotide transport and metabolism, Intracellular trafficking, secretion and vesicular transport, cell motility and amino acid transport & metabolism. Pathogenic leptospires exhibit fewer clade-specific genes than non-pathogenic and intermediate leptospires, indicating gene loss and gain events in the evolution of pathogenic leptospires from non-pathogenic. The study's clade-specific and virulent genes can be utilised as markers for defining clade and associated virulence levels in any new Leptospira isolates. Wet-lab validation of virulent genes will help in accurately targeting pathogenic pathways of Leptospira and controlling leptospirosis.
Collapse
Affiliation(s)
- Mohd Abdullah
- Genomics and Computational Biology Lab, National Institute of Animal Biotechnology, Hyderabad, 500049, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Rolee Sharma
- Department of Biosciences, Integral University, Lucknow, India
- Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, India
| | - Mirza S Baig
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, MP, India
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Sarwar Azam
- Genomics and Computational Biology Lab, National Institute of Animal Biotechnology, Hyderabad, 500049, India.
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
2
|
Wang XT, Liu KH, Li Y, Ren YY, Li Q, Wang BT. Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence of Fusarium graminearum. STRESS BIOLOGY 2024; 4:45. [PMID: 39472326 PMCID: PMC11522218 DOI: 10.1007/s44154-024-00171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/29/2024] [Indexed: 11/02/2024]
Abstract
Metalloproteinases are ubiquitous in organisms. Most metalloproteinases secreted by pathogenic microorganisms are also called virulence factors, because they degrade proteins in the external tissues of the host, thereby reducing the host's immunity and increasing its susceptibility to disease. Zinc metalloproteinase is one of the most common metalloproteinases. In our report, we studied the biological function of zinc metalloprotease FgM35 in Fusarium graminearum and the pathogen-host interaction during infection. We found that the asexual and sexual reproduction of the deletion mutant ΔFgM35 were affected, as well as the tolerance of F. graminearum to metal stress. In addition, deletion of FgM35 reduced the virulence of F. graminearum. The wheat target TaZnBP was screened using a wheat yeast cDNA library, and the interaction between FgM35 and TaZnBP was verified by HADDOCK molecular docking, yeast two-hybrid, Bi-FC, Luc, and Co-IP assays. The contribution of TaZnBP to plant immunity was also demonstrated. In summary, our work revealed the indispensable role of FgM35 in the reproductive process and the pathogenicity of F. graminearum, and it identified the interaction between FgM35 and TaZnBP as well as the function of TaZnBP. This provides a theoretical basis for further study of the function of metalloproteinases in pathogen-host interactions.
Collapse
Affiliation(s)
- Xin-Tong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China
| | - Kou-Han Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China
| | - Ying Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China
| | - Yan-Yan Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China
| | - Qiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China.
| | - Bao-Tong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shannxi Province, 712100, People's Republic of China.
| |
Collapse
|
3
|
Liu K, Wang X, Qi Y, Li Y, Shi Y, Ren Y, Wang A, Cheng P, Wang B. Effector Protein Serine Carboxypeptidase FgSCP Is Essential for Full Virulence in Fusarium graminearum and Is Involved in Modulating Plant Immune Responses. PHYTOPATHOLOGY 2024; 114:2131-2142. [PMID: 38831556 DOI: 10.1094/phyto-02-24-0068-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Fusarium head blight caused by Fusarium graminearum is a significant pathogen affecting wheat crops. During the infection process, effector proteins are secreted to modulate plant immunity and promote infection. The toxin deoxynivalenol is produced in infected wheat grains, posing a threat to human and animal health. Serine carboxypeptidases (SCPs) belong to the α/β hydrolase family of proteases and are widely distributed in plant and fungal vacuoles, as well as animal lysosomes. Research on SCPs mainly focuses on the isolation, purification, and production of a small number of fungi. The role of SCPs in plant secretion, growth and development, and stress resistance has also been extensively studied. However, their functions in F. graminearum, a fungal pathogen, remain relatively unknown. In this study, the biological functions of the FgSCP gene in F. graminearum were investigated. The study revealed that mutations in FgSCP affected the nutritional growth, sexual reproduction, and stress tolerance of F. graminearum. Furthermore, the deletion of FgSCP resulted in reduced pathogenicity and hindered the biosynthesis of deoxynivalenol. The upregulation of FgSCP expression 3 days after infection indicated its involvement in host invasion, possibly acting as a "smokescreen" to deceive the host and suppress the expression of host defensive genes. Subsequently, we confirmed the secretion ability of FgSCP and its ability to inhibit the cell death induced by INF1 in Nicotiana benthamiana cells, indicating its potential role as an effector protein in suppressing plant immune responses and promoting infection. In summary, we have identified FgSCP as an essential effector protein in F. graminearum, playing critical roles in growth, virulence, secondary metabolism, and host invasion.
Collapse
Affiliation(s)
- Kouhan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhe Qi
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research of China), Changchun, Jilin 136100, China
| | - Ying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aolin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Du J, Dong Y, Zuo W, Deng Y, Zhu H, Yu Q, Li M. Mec1-Rad53 Signaling Regulates DNA Damage-Induced Autophagy and Pathogenicity in Candida albicans. J Fungi (Basel) 2023; 9:1181. [PMID: 38132782 PMCID: PMC10744610 DOI: 10.3390/jof9121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
DNA damage activates the DNA damage response and autophagy in C. albicans; however, the relationship between the DNA damage response and DNA damage-induced autophagy in C. albicans remains unclear. Mec1-Rad53 signaling is a critical pathway in the DNA damage response, but its role in DNA damage-induced autophagy and pathogenicity in C. albicans remains to be further explored. In this study, we compared the function of autophagy-related (Atg) proteins in DNA damage-induced autophagy and traditional macroautophagy and explored the role of Mec1-Rad53 signaling in regulating DNA damage-induced autophagy and pathogenicity. We found that core Atg proteins are required for these two types of autophagy, while the function of Atg17 is slightly different. Our results showed that Mec1-Rad53 signaling specifically regulates DNA damage-induced autophagy but has no effect on macroautophagy. The recruitment of Atg1 and Atg13 to phagophore assembly sites (PAS) was significantly inhibited in the mec1Δ/Δ and rad53Δ/Δ strains. The formation of autophagic bodies was obviously affected in the mec1Δ/Δ and rad53Δ/Δ strains. We found that DNA damage does not induce mitophagy and ER autophagy. We also identified two regulators of DNA damage-induced autophagy, Psp2 and Dcp2, which regulate DNA damage-induced autophagy by affecting the protein levels of Atg1, Atg13, Mec1, and Rad53. The deletion of Mec1 or Rad53 significantly reduces the ability of C. albicans to systematically infect mice and colonize the kidneys, and it makes C. albicans more susceptible to being killed by macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China; (J.D.); (Y.D.); (W.Z.); (Y.D.); (H.Z.); (Q.Y.)
| |
Collapse
|
5
|
Liu K, Wang X, Li Y, Shi Y, Ren Y, Wang A, Zhao B, Cheng P, Wang B. Protein Disulfide Isomerase FgEps1 Is a Secreted Virulence Factor in Fusarium graminearum. J Fungi (Basel) 2023; 9:1009. [PMID: 37888265 PMCID: PMC10607971 DOI: 10.3390/jof9101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a member of the thioredoxin (Trx) superfamily with important functions in cellular stability, ion uptake, and cellular differentiation. While PDI has been extensively studied in humans and animals, its role in fungi remains relatively unknown. In this study, the biological functions of FgEps1, a disulfide bond isomerase in the fungal pathogen Fusarium graminearum, were investigated. It was found that FgEps1 mutation affected nutritional growth, asexual and sexual reproduction, and stress tolerance. Additionally, its deletion resulted in reduced pathogenicity and impaired DON toxin biosynthesis. The involvement of FgEps1 in host infection was also confirmed, as its expression was detected during the infection period. Further investigation using a yeast signal peptide secretion system and transient expression in Nicotiana benthamiana showed that FgEps1 suppressed the immune response of plants and promoted infection. These findings suggest that virulence factor FgEps1 plays a crucial role in growth, development, virulence, secondary metabolism, and host infection in F. graminearum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (K.L.); (X.W.); (Y.L.); (Y.S.); (Y.R.); (A.W.); (B.Z.)
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (K.L.); (X.W.); (Y.L.); (Y.S.); (Y.R.); (A.W.); (B.Z.)
| |
Collapse
|
6
|
Zhang C, Zhang H, Zheng X, Wang Y, Ye W. Functional Characterization of Two Cell Wall Integrity Pathway Components of the MAPK Cascade in Phomopsis longicolla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:47-58. [PMID: 36282555 DOI: 10.1094/mpmi-07-22-0156-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pathogenic fungus Phomopsis longicolla causes numerous plant diseases, such as Phomopsis seed decay, pod and stem blight, and stem canker, which seriously affect the yield and quality of soybean production worldwide. Because of a lack of technology for efficient manipulation of genes for functional genomics, understanding of P. longicolla pathogenesis is limited. Here, we developed an efficient polyethylene glycol-mediated protoplast transformation system in P. longicolla that we used to characterize the functions of two genes involved in the cell wall integrity (CWI) pathway of the mitogen-activated protein kinase (MAPK) cascade, including PlMkk1, which encodes MAPK kinase, and its downstream gene PlSlt2, which encodes MAPK. Both gene knockout mutants ΔPlMkk1 and ΔPlSlt2 displayed a reduced growth rate, fragile aerial hyphae, abnormal polarized growth and pigmentation, defects in sporulation, inadequate CWI, enhanced sensitivity to abiotic stress agents, and significant deficiencies in virulence, although there were some differences in degree. The results suggest that PlMkk1 and PlSlt2 are crucial for a series of growth and development processes as well as pathogenicity. The developed transformation system will be a useful tool for additional gene function research and will aid in the elucidation of the pathogenic mechanisms of P. longicolla. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
8
|
Wang X, He M, Liu H, Ding H, Liu K, Li Y, Cheng P, Li Q, Wang B. Functional Characterization of the M36 Metalloprotease FgFly1 in Fusarium graminearum. J Fungi (Basel) 2022; 8:jof8070726. [PMID: 35887481 PMCID: PMC9316299 DOI: 10.3390/jof8070726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Fungalysin metallopeptidase (M36), a hydrolase, catalyzes the hydrolysis of alanine, glycine, etc. Normally, it is considered to play an important role in the progress of fungal infection. However, the function of fungalysin metallopeptidase (M36) in Fusarium graminearum has not been reported. In this study, we explored the biological functions of FgFly1, a fungalysin metallopeptidase (M36) of F. graminearum. We found that ΔFgFly1 did not affect the ability to produce DON toxin, although it inhibited spore germination during asexual reproduction and reduction in pathogenicity compared with PH-1. Therefore, we speculated that FgFly1 affects the pathogenicity of F.graminearum by affecting pathways related to wheat disease resistance. Target protein TaCAMTA (calmodulin-binding transcription activator) was selected by a yeast two-hybrid (Y2H) system. Then, the interaction between FgFly1 and TaCAMTA was verified by bimolecular fluorescent complimentary (BiFC) and luciferase complementation assay (LCA). Furthermore, compared with wild-type Arabidopsis thaliana, the morbidity level of ΔAtCAMTA was increased after infection with F.graminearum, and the expression level of NPR1 was significantly reduced. Based on the above results, we concluded that FgFly1 regulated F. graminearum pathogenicity by interacting with host cell CAMTA protein.
Collapse
|
9
|
Li C, Fan S, Wen Y, Tan Z, Liu C. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and TRI Gene Transcript Levels in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1684-1692. [PMID: 33522237 DOI: 10.1021/acs.jafc.0c06800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, deoxynivalenol (DON) has frequently been detected in wheat grains and their products. The enantioselective impact of flutriafol on the growth and DON biosynthesis of Fusarium graminearum was investigated in relation to water activity (αw, 0.97 and 0.99) and temperature (20, 25, and 30 °C) on the wheat-based medium. R-(-)-flutriafol exhibited higher bioactivity than S-(+)-flutriafol and Rac-flutriafol under the above conditions. Flutriafol enantiomers reduced or stimulated DON biosynthesis depending on αw. DON levels were negligible after 14 or 7 days of incubation times under 0.97 and 0.99 aw, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that the expression levels of trichothecene biosynthetic (TRI) genes of F. graminearum under 0.97 aw were significantly higher than those under 0.99 aw. In addition, R-(-)-flutriafol can induce more TRI gene expression than S-(+)-flutriafol. Taken together, this study indicated that aw and temperature play important roles in regulating DON biosynthesis in F. graminearum with flutriafol enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| |
Collapse
|
10
|
Fu W, Wu N, Ke D, Chen Y, Xu T, Tang G. Discovery of a species-specific novel antifungal compound against Fusarium graminearum through an integrated molecular modeling strategy. PEST MANAGEMENT SCIENCE 2020; 76:3990-3999. [PMID: 32506565 DOI: 10.1002/ps.5948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The cyanoacrylate fungicide phenamacril targeting fungal myosin I has been widely used for controlling Fusarium head blight (FHB) of wheat caused by the pathogenic fungus Fusarium graminearum worldwide. Therefore, there is great interest in the discovery and development of novel FgMyo1 inhibitors through structure-based drug design for the treatment of FHB. RESULTS In this study, the binding mechanism of phenamacril with FgMyo1 was predicted by an integrated molecular modeling strategy. The predicted key phenamacril-binding residues of FgMyo1 were further experimentally validated by point mutagenesis and phenamacril sensitivity assessment. Four novel key residues responsible for phenamacril binding were identified, highlighting the reliability of the theoretical predictions. The subsequent optimization of phenamacril derivatives led to the discovery of a novel compound (10) which shows better activity than phenamacril against conidial germination of F. graminearum, but not against other fungal species. Moreover, 10 also inhibits conidial germination of phenamacril-resistant strains effectively. Further experiments illustrated that application of 10 could dramatically inhibit deoxynivalenol biosynthesis. CONCLUSION Overall, our results further optimize and develop the binding model of phenamacril-myosin I. Furthermore, 10 was found and has the potential to be developed as a species-specific fungicide for management of FHB. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weitao Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ningjie Wu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Di Ke
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Tianming Xu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Guangfei Tang
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Chen A, Ju Z, Wang J, Wang J, Wang H, Wu J, Yin Y, Zhao Y, Ma Z, Chen Y. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signalling pathways. Environ Microbiol 2020; 22:5109-5124. [PMID: 32537857 DOI: 10.1111/1462-2920.15129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhen Ju
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|