1
|
Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS. Impact of Exogenous dsRNA on miRNA Composition in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2335. [PMID: 39204771 PMCID: PMC11360658 DOI: 10.3390/plants13162335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase (CHS)-encoding dsRNA to the rosette leaves of Arabidopsis thaliana induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II (NPTII) dsRNA had a minimal effect. Two days after treatment, we detected 60 differentially expressed miRNAs among the 428 miRNAs found in the A. thaliana genome. A total of 59 miRNAs were significantly changed after AtCHS-dsRNA treatment compared with water and NPTII-dsRNA, and 1 miRNA was significantly changed after AtCHS-dsRNA and NPTII-dsRNA compared with the water control. A comprehensive functional enrichment analysis revealed 17 major GO categories enriched among the genes potentially targeted by the up- and downregulated miRNAs. These categories included processes such as aromatic compound biosynthesis (a pathway directly related to CHS activity), heterocycle biosynthesis, RNA metabolism and biosynthesis, DNA transcription, and plant development. Several predicted targets of upregulated and downregulated miRNAs, including APETALA2, SCL27, SOD1, GRF1, AGO2, PHB, and PHV, were verified by qRT-PCR. The analysis showed a negative correlation between the expression of miRNAs and the expression of their predicted targets. Thus, exogenous plant gene-specific dsRNAs induce substantial changes in the plant miRNA composition, ultimately affecting the expression of a wide range of genes. These findings have profound implications for our understanding of the effects of exogenously induced RNA interference, which can have broader effects beyond targeted mRNA degradation, affecting the expression of other genes through miRNA regulation.
Collapse
Affiliation(s)
| | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (N.N.N.); (A.R.S.)
| |
Collapse
|
2
|
Fan S, Tang Y, Zhu N, Meng Q, Zhou Y, Zhao Y, Xu J, Gu C, Dai S, Zhu B, Yuan X. Analyzing the defense response mechanism of Atractylodes macrocephala to Fusarium oxysporum through small RNA and degradome sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1415209. [PMID: 39104842 PMCID: PMC11298489 DOI: 10.3389/fpls.2024.1415209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Introduction Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.
Collapse
Affiliation(s)
- Sen Fan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunjia Tang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Na Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingling Meng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanguang Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujin Zhao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Dai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Li Y, Wang N, Guo J, Zhou X, Bai X, Azeem M, Zhu L, Chen L, Chu M, Wang H, Cheng W. Integrative Transcriptome Analysis of mRNA and miRNA in Pepper's Response to Phytophthora capsici Infection. BIOLOGY 2024; 13:186. [PMID: 38534455 DOI: 10.3390/biology13030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Phytophthora blight of pepper is a notorious disease caused by the oomycete pathogen Phytophthora capsici, which poses a great threat to global pepper production. MicroRNA (miRNA) is a class of non-coding small RNAs that regulate gene expressions by altering the translation efficiency or stability of targeted mRNAs, which play important roles in the regulation of a plant's response to pathogens. Herein, time-series mRNA-seq libraries and small RNA-seq libraries were constructed using pepper roots from the resistant line CM334 and the susceptible line EC01 inoculated with P. capsici at 0, 6, 24, and 48 h post-inoculation, respectively. For mRNA-seq analysis, a total of 2159 and 2971 differentially expressed genes (DEGs) were identified in CM334 and EC01, respectively. For miRNA-seq analysis, 491 pepper miRNAs were identified, including 330 known miRNAs and 161 novel miRNAs. Among them, 69 and 88 differentially expressed miRNAs (DEMs) were identified in CM334 and EC01, respectively. Examination of DEMs and their targets revealed 22 regulatory networks, predominantly featuring up-regulated miRNAs corresponding to down-regulated target genes. Notably, these DEM-DEG regulatory networks exhibited significant overlap between CM334 and EC01, suggesting that they might contribute to pepper's basal defense against P. capsici. Furthermore, five selected DEMs (miR166, miR1171, miR395, miR530 and miRN2) and their target genes underwent qRT-PCR validation, confirming a consistent negative correlation in the expression patterns of miRNAs and their targets. This comprehensive analysis provides novel insights into the regulatory networks of miRNAs and their targets, offering valuable contributions to our understanding of pepper's defense mechanisms against P. capsici.
Collapse
Affiliation(s)
- Yuan Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Nan Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Jianwen Guo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjun Zhou
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Xueyi Bai
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Muhammad Azeem
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Liyun Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Moli Chu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Wei Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. PLANTA 2023; 259:32. [PMID: 38153530 DOI: 10.1007/s00425-023-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Verenice Chamu-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico
| | - Alma L Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.
| |
Collapse
|
5
|
Yang K, Huang Y, Li Z, Zeng Q, Dai X, Lv J, Zong X, Deng K, Zhang J. Overexpression of Nta-miR6155 confers resistance to Phytophthora nicotianae and regulates growth in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1281373. [PMID: 38053762 PMCID: PMC10694243 DOI: 10.3389/fpls.2023.1281373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Tobacco black shank induced by Phytophthora nicotianae causes significant yield losses in tobacco plants. MicroRNAs (miRNAs) play a pivotal role in plant biotic stress responses and have great potential in tobacco breeding for disease resistance. However, the roles of miRNAs in tobacco plants in response to P. nicotianae infection has not been well characterized. In this study, we found that Nta-miR6155, a miRNA specific to Solanaceae crops, was significantly induced in P. nicotianae infected tobacco. Some of predicted target genes of Nta-miR6155 were also observed to be involved in disease resistance. To further investigate the function of miR6155 in tobacco during P. nicotianae infection, Nta-miR6155 overexpression plants (miR6155-OE) were generated in the Honghua Dajinyuan tobacco variety (HD, the main cultivated tobacco variety in China). We found that the Nta-miR6155 overexpression enhanced the resistance in tobacco towards P. nicotianae infections. The level of reactive oxygen species (ROS) was significantly lower and antioxidant enzyme activities were significantly higher in miR6155-OE plants than those in control HD plants during P. nicotianae infection. In addition, we found that the accumulation of salicylic acid and the expression of salicylic acid biosynthesis and signal transduction-related genes is significantly higher in miR6155-OE plants in comparison to the control HD plants. Furthermore, we found that Nta-miR6155 cleaved target genes NtCIPK18 to modulate resistance towards P. nicotianae in tobacco plants. Additionally, phenotypic analysis of miR6155-OE plants showed that Nta-miR6155 could inhibit the growth of tobacco by suppressing nitrogen uptake and photosynthesis. In conclusion, our findings indicated that miR6155 plays a crucial role in the regulation of growth and resistance against P. nicotianae infections in tobacco plants.
Collapse
Affiliation(s)
- Kaiyue Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuanyuan Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zexuan Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qian Zeng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jun Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xuefeng Zong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| |
Collapse
|
6
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Rego ECS, Pinheiro TDM, Fonseca FCDA, Gomes TG, Costa EDC, Bastos LS, Alves GSC, Cotta MG, Amorim EP, Ferreira CF, Togawa RC, Costa MMDC, Grynberg P, Miller RNG. Characterization of microRNAs and Target Genes in Musa acuminata subsp. burmannicoides, var. Calcutta 4 during Interaction with Pseudocercospora musae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1473. [PMID: 37050099 PMCID: PMC10097032 DOI: 10.3390/plants12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.
Collapse
Affiliation(s)
| | | | | | - Taísa Godoy Gomes
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Erica de Castro Costa
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Lucas Santos Bastos
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | - Michelle Guitton Cotta
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Marcos Mota Do Carmo Costa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
8
|
Zhu X, Guo L, Zhu R, Zhou X, Zhang J, Li D, He S, Qiao Y. Phytophthora sojae effector PsAvh113 associates with the soybean transcription factor GmDPB to inhibit catalase-mediated immunity. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36972124 DOI: 10.1111/pbi.14043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phytophthora species are the most destructive plant pathogens worldwide and the main threat to agricultural and natural ecosystems; however, their pathogenic mechanism remains largely unknown. Here, we show that Avh113 effector is required for the virulence of Phytophthora sojae and is important for development of Phytophthora root and stem rot (PRSR) in soybean (Glycine max). Ectopic expression of PsAvh113 enhanced viral and Phytophthora infection in Nicotiana benthamiana. PsAvh113 directly associated with the soybean transcription factor GmDPB, inducing its degradation by the 26S proteasome. The internal repeat 2 (IR2) motif of PsAvh113 was important for its virulence and interaction with GmDPB, while silencing and overexpression of GmDPB in soybean hairy roots altered the resistance to P. sojae. Upon binding to GmDPB, PsAvh113 decreased the transcription of the downstream gene GmCAT1, which acts as a positive regulator of plant immunity. Furthermore, we revealed that PsAvh113 suppressed the GmCAT1-induced cell death by associating with GmDPB, thereby enhancing plant susceptibility to Phytophthora. Together, our findings reveal a vital role of PsAvh113 in inducing PRSR in soybean and offer a novel insight into the interplay between defence and counter-defence during the P. sojae infection of soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ruiqing Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shidan He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Guan Y, Wei Z, Song P, Zhou L, Hu H, Hu P, Li C. MicroRNA Expression Profiles in Response to Phytophthora infestans and Oidium neolycopersici and Functional Identification of sly-miR397 in Tomato. PHYTOPATHOLOGY 2023; 113:497-507. [PMID: 36346372 DOI: 10.1094/phyto-04-22-0117-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Late blight and powdery mildew are two widespread tomato diseases caused by Phytophthora infestans and Oidium neolycopersici, respectively, which reduce the quantity and quality of tomato. MicroRNAs (miRNAs) play critical roles in tomato resistance to various pathogens. Investigating the function of miRNAs is of great significance in controlling tomato diseases. To identify potential miRNAs involved in the interaction of tomato with P. infestans or O. neolycopersici, we analyzed the expression profiles of small RNAs in tomato leaves infected with these two pathogens using RNA-seq technology. A total of 330 and 288 miRNAs exhibited differences in expression levels after exposure to P. infestans and O. neolycopersici, respectively. One hundred and forty-six commonly differentially expressed (DE) miRNAs responsive to P. infestans and O. neolycopersici infestation were detected, including 10 commonly known conserved DE miRNAs and 136 novel miRNAs. Among these known DE miRNAs, sly-miR397 was strongly downregulated in response to P. infestans or O. neolycopersici infection. Silencing of sly-miR397 resulted in enhanced tolerance to the pathogens, whereas overexpression of sly-miR397 showed increased susceptibility. Furthermore, changes in sly-miR397 expression could also affect expression levels of pathogenesis-related genes and reactive oxygen species-scavenging genes, leading to altered necrotic cells and H2O2 levels. In addition, the number of lateral branches significantly changed in transgenic plants. Taken together, our results provide potential miRNA resources for further research of miRNA-disease associations and indicates that sly-miR397 acts as a negative regulator of disease resistance and influences lateral branch development in tomato.
Collapse
Affiliation(s)
- Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zhiyuan Wei
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Luyi Zhou
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
10
|
Genome-wide comprehensive analysis of miRNAs and their target genes expressed in resistant and susceptible Capsicum annuum genotypes during Phytophthora capsici infection. Mol Genet Genomics 2023; 298:273-292. [PMID: 36418510 DOI: 10.1007/s00438-022-01979-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Despite extensive works on miRNA's role during plant-oomycete interaction, its role in Capsicum annuum-Phytophthora capsici pathosystem is not fully explored. Therefore, the present study was designed to identify known and novel miRNAs along with their target genes in two contrasting chili peppers genotypes, i.e., GojamMecha_9086 (resistant) and Dabat_80045 (susceptible) under P. capsici infection associated with modulating the defense response during disease pathogenesis. The result demonstrated 79 known miRNAs corresponding to 24 miRNAs families and 477 novel miRNAs along with 22,895 potential targets, including 30 defense-related target genes against P. capsici infection. The expression analysis of 29 known and 157 novel miRNAs in resistant and 30 known and 177 novel miRNAs in susceptible genotypes revealed differential accumulation patterns. qRT-PCR analysis of 8 defense-related miRNAs representing 4 novels (Pz-novel-miR428-1, Pz-novel-miR160-1, Pz-novel-miR1028-1, Pz-novel-miR204-1) and 4 known miRNAs (Pz-known-miR803-1, Pz-known-miR2059-1, Pz-known-miR2560-1, Pz-known-miR1872-1) revealed differential accumulation pattern in both resistant and susceptible genotypes. Additionally, validation of eight target genes of miRNAs using regional amplification quantitative RT-PCR (RA-PCR), a superior technique to 5'-RNA Ligase-Mediated-rapid amplification of cDNA ends (5' RLM-RACE), revealed expression of six target genes positively correlated with their corresponding miRNAs in RC versus RI leaf, while five target genes observed an inverse correlation with their corresponding miRNAs in SC versus SI leaf, suggesting their key role during disease response. The Pz-known-miR1872-PODs pair showed perfect inverse relation in all four samples. The significant findings of the current study provide comprehensive genome-wide information about the repertoire of miRNAs and their target genes expressed in resistant and susceptible chili pepper genotypes, which can serve as a valuable resource for better understanding the post-transcriptional regulatory mechanism during C. annuum-P. capsici pathosystem.
Collapse
|
11
|
Li J, Li Y, Wang R, Fu J, Zhou X, Fang Y, Wang Y, Liu Y. Multiple Functions of MiRNAs in Brassica napus L. Life (Basel) 2022; 12:1811. [PMID: 36362967 PMCID: PMC9694376 DOI: 10.3390/life12111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 09/05/2023] Open
Abstract
The worldwide climate changes every year due to global warming, waterlogging, drought, salinity, pests, and pathogens, impeding crop productivity. Brassica napus is one of the most important oil crops in the world, and rapeseed oil is considered one of the most health-beneficial edible vegetable oils. Recently, miRNAs have been found and confirmed to control the expression of targets under disruptive environmental conditions. The mechanism is through the formation of the silencing complex that mediates post-transcriptional gene silencing, which pairs the target mRNA and target cleavage and/or translation inhibition. However, the functional role of miRNAs and targets in B. napus is still not clarified. This review focuses on the current knowledge of miRNAs concerning development regulation and biotic and abiotic stress responses in B. napus. Moreover, more strategies for miRNA manipulation in plants are discussed, along with future perspectives, and the enormous amount of transcriptome data available provides cues for miRNA functions in B. napus. Finally, the construction of the miRNA regulatory network can lead to the significant development of climate change-tolerant B. napus through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yangyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Rongyuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Jiangyan Fu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Xinxing Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| |
Collapse
|
12
|
Gou X, Zhong C, Zhang P, Mi L, Li Y, Lu W, Zheng J, Xu J, Meng Y, Shan W. miR398b and AtC2GnT form a negative feedback loop to regulate Arabidopsis thaliana resistance against Phytophthora parasitica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:360-373. [PMID: 35506331 DOI: 10.1111/tpj.15792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.
Collapse
Affiliation(s)
- Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peiling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liru Mi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Feng S, Shi J, Hu Y, Li D, Guo L, Zhao Z, Lee GS, Qiao Y. Genome-Wide Analysis of Soybean Lateral Organ Boundaries Domain Gene Family Reveals the Role in Phytophthora Root and Stem Rot. FRONTIERS IN PLANT SCIENCE 2022; 13:865165. [PMID: 35599907 PMCID: PMC9116278 DOI: 10.3389/fpls.2022.865165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific lateral organ boundaries (LOB) domain (LBD) proteins, a family of transcription factors, play important roles in plant growth and development, as well as in responses to various stresses. However, little is known about the functions of LBD genes in soybean (Glycine max). In this study, we investigated the evolution and classification of the LBD family in soybean by a phylogenetic tree of the LBD gene family from 16 species. Phylogenetic analysis categorized these proteins into two classes (Class I and Class II) with seven subgroups. Moreover, we found that all the 18 LBD ancestors in angiosperm were kept in soybean, common bean genomes, and genome-wide duplication, suggesting the main force for the expansion of LBD from common bean to soybean. Analysis of gene expression profiling data indicated that 16 GmLBD genes were significantly induced at different time points after inoculation of soybean plants (cv. Huachun 6) with Phytophthora sojae (P. sojae). We further assessed the role of four highly upregulated genes, GmLBD9, GmLBD16, GmLBD23, and GmLBD88, in plant defense in soybean hairy roots using the transient overexpression and knockdown assays. The results showed that GmLBD9 and GmLBD23 negatively regulate plant immunity against P. sojae, whereas GmLBD16 and GmLBD88 positively manipulate plant immunity against P. sojae. Collectively, our findings expand our knowledge of the origin and evolution of the GmLBD gene family in soybean and promote the potential application of these genes in soybean genetic improvement.
Collapse
Affiliation(s)
- Siqi Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeonju, South Korea
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Fasani E, DalCorso G, Zorzi G, Vitulo N, Furini A. Comparative analysis identifies micro-RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis halleri. PHYSIOLOGIA PLANTARUM 2021; 173:920-934. [PMID: 34171137 PMCID: PMC8597110 DOI: 10.1111/ppl.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Gianluca Zorzi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Nicola Vitulo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | |
Collapse
|
15
|
Shi J, Ye W, Ma D, Yin J, Zhang Z, Wang Y, Qiao Y. Improved Whole-Genome Sequence of Phytophthora capsici Generated by Long-Read Sequencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:866-869. [PMID: 33720746 DOI: 10.1094/mpmi-12-20-0356-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The soilborne oomycete Phytophthora capsici is the most destructive pathogen of vegetable crops and is responsible for substantial economic losses worldwide. Here, we present an improved genome assembly of P. capsici generated by Oxford Nanopore long-read sequencing (for de novo assembly) and Illumina short-read sequencing (for polishing). The genome of P. capsici is 100.5 Mb in length (GC content = 50.8%) and contains 26,069 predicted protein-coding genes. The whole genome of P. capsici is assembled into 194 scaffolds, 90% of which are larger than 300 kb. The N50 scaffold length and maximum scaffold length are 1.0 and 4.1 Mb, respectively. The whole-genome sequence of P. capsici will broaden our knowledge of this pathogen and enhance our understanding of the molecular basis of its pathogenicity, which will facilitate the development of effective management strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dongfang Ma
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|