1
|
Benedetti F, Atanasio P, Buccini L, Kratter M, Mura F, Passeri D, Rossi M, Trippetta F, Rinaldi T. Bioconsolidation strategies for carbonate lithologies: Effectiveness and mechanisms in calcarenite, travertine, and marble. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179092. [PMID: 40068418 DOI: 10.1016/j.scitotenv.2025.179092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Toxic substances are often employed in conventional stone preservation techniques, whereas biorestoration offers material compatibility along with significant benefits for cultural heritage preservation, environmental safety, and sustainability. However, the application of this innovative technique to natural rocks is not fully understood. In this study, we evaluated the efficiency of a carbonatogenic bacterial strain (Lysinbacillus fusiformis 3.20) on three natural carbonate rocks: Calcarenite (CA), Travertine (TR) and Marble (MA), having different porosities. We integrated surface analyses (Field Emission Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction) with bulk analyses (Porosity, Ultrasonic Wave Velocity, and Dynamic Elastic Moduli) to investigate the bioconsolidation processes. The results indicated that the biomineralization treatment had no effect on MA samples, while it improved the physical and mechanical properties of both CA and TR, evidenced by the formation of new bioprecipitates. Total and effective porosity decreased, particularly in CA, while ultrasonic wave velocities (Vp and Vs) and Young's modulus increased, with Poisson's ratio remaining unchanged. Comparative observations suggest that connected, randomly distributed, and low aspect ratio pores facilitate microbial activity by enabling deeper bacterial penetration into the stone, supporting nutrient distribution and the formation of calcium carbonate precipitates. When the treatment is effective, stiffness and strength are expected to increase due to reduced effective porosity, while resistance to shear deformation remains nearly constant, as does the relationship between porosity and wave velocities.
Collapse
Affiliation(s)
- Francesca Benedetti
- Department of Biology and Biotechnologies, 00185, Sapienza University of Rome, Rome, Italy
| | - Pierfrancesco Atanasio
- Department of Basic and Applied Sciences for Engineering, 00161, Sapienza University of Rome, Rome, Italy
| | - Luca Buccini
- Department of Basic and Applied Sciences for Engineering, 00161, Sapienza University of Rome, Rome, Italy
| | - Matilde Kratter
- Department of Biology and Biotechnologies, 00185, Sapienza University of Rome, Rome, Italy
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering, 00161, Sapienza University of Rome, Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, 00161, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, 00161, Sapienza University of Rome, Rome, Italy; CNIS - Interdepartmental research center on nanotechnologies applied to engineering of Sapienza, Sapienza University of Rome, Rome, Italy
| | - Fabio Trippetta
- Department of Earth Sciences, 00185, Sapienza University of Rome, Rome, Italy.
| | - Teresa Rinaldi
- Department of Biology and Biotechnologies, 00185, Sapienza University of Rome, Rome, Italy; CNIS - Interdepartmental research center on nanotechnologies applied to engineering of Sapienza, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Farda B, Mignini A, Djebaili R, Cacchio P, Del Gallo M, Pellegrini M. Erratic calcareous deposits: Biotic formation insights and biomineralising bacterial strain isolation. Acta Biomater 2025; 195:256-265. [PMID: 39954754 DOI: 10.1016/j.actbio.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The present study investigated the contribution of microbial communities in producing "living stones" and the suitability of these clasts as sources of microorganisms with biomineralisation abilities. The calcareous samples were analysed for their microbial community (16S rRNA gene metabarcoding and culturable approach) and in vitro regeneration tests. Scanning electron microscopy and Energy Dispersive Spectroscopy (SEM-EDX) were applied to investigate microbial aggregation structures and footprints in natural and in vitro samples. The metabarcoding unveiled amplicon sequence variants (ASVs) assigned to lineages with biomineralisation abilities (e.g., Proteobacteria and Actinobacteriota). The culturable approach resulted in nineteen calcifying isolates with diverse morphological, metabolic, and mineral precipitation properties. Based on mineralising properties, Stenotrophomonas maltophilia, Lysinbacillus fusiformis, and Microbacterium ginsengiterrae were identified at the molecular level. In vitro regeneration tests and SEM-EDX analyses confirmed the active role of the endogenous microorganisms in forming these "living stones". These findings allow us to hypothesise an essential role of microbial precipitation in forming these "living stones", previously described as of abiotic origin. The current study findings provide a solid scientific foundation for future investigations. The obtained bacterial isolates and their potential applications in bioremediation, construction, and cultural heritage restoration demonstrate the direct applicability of our study in sectors involving biomaterials application. STATEMENT OF SIGNIFICANCE: We studied some "living stones" that can be found worldwide and whose origin is still not completely understood. Geologists have not yet fully explained the origin of these inorganic structures that grow in size over time. The results obtained from our microbiological investigations allowed us to discover that microorganisms play a crucial role in forming these masses. In the investigations of the structures and microbial communities within the stones, we identified specific bacteria that actively contribute to forming minerals and isolated bacteria that can form biominerals. These findings deepen our understanding of natural processes involved in the formation of these structures and show their potential for several applications (e.g., building materials or cultural heritage preservation).
Collapse
Affiliation(s)
- Beatrice Farda
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy
| | - Amedeo Mignini
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy
| | - Rihab Djebaili
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy
| | - Paola Cacchio
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy
| | - Maddalena Del Gallo
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy
| | - Marika Pellegrini
- Department MeSVA, Environmental Sciences Section, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
3
|
Mallick S, Pradhan T, Das S. Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123977. [PMID: 39752943 DOI: 10.1016/j.jenvman.2024.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation. This article summarizes the different biomineralization mechanisms of bacterial-induced heavy metal biomineralization, mainly microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and microbial-induced sulphide precipitation (MISP). Moreover, bacterial structures such as cell wall, biofilm, and extracellular polymeric substances (EPS) influence mineralization and control bacterial compartmentalization of heavy metal precipitation. Several genes control the efficiency of biomineralization in bacteria, such as ureA, ureB, ureC, phoA, dsrA, dsrB, dsrC, dsrD, dsrE, luxS, and ompR. This biomineralization mechanism provides new and broad prospects for its application in soil improvement, industrial applications, and wastewater treatments. In addition, bacterial genetic modification holds immense potential for advancing the biomineralization process to meet diverse environmental and industrial needs.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
4
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
5
|
Sanjurjo-Sánchez J, Alves C, Freire-Lista DM. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168846. [PMID: 38036142 DOI: 10.1016/j.scitotenv.2023.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Biominerals deposition processes, also called biomineralisation, are intimately related to biodeterioration on stone surfaces. They include complex processes not always completely well understood. The study of biominerals implies the identification of organisms, their molecular mechanisms, and organism/rock/atmosphere interactions. Sampling restrictions of monument stones difficult the biominerals study and the in situ demonstrating of biodeterioration processes. Multidisciplinary works are required to understand the whole process. Thus, studies in heritage buildings have taken advantage of previous knowledge acquired thanks to laboratory experiments, investigations carried out on rock outcrops and within caves from some years ago. With the extrapolation of such knowledge to heritage buildings and the advances in laboratory techniques, there has been a huge increase of knowledge regarding biomineralisation and biodeterioration processes in stone monuments during the last 20 years. These advances have opened new debates about the implications on conservation interventions, and the organism's role in stone conservation and decay. This is a review of the existing studies of biominerals formation, biodeterioration on laboratory experiments, rocks, caves, and their application to building stones of monuments.
Collapse
Affiliation(s)
| | - Carlos Alves
- LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020) and Earth Sciences Department/School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Freire-Lista
- Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências da Vida e do Ambiente, Quinta dos Prados, 5000-801 Vila Real, Portugal; Centro de Geociências, Universidade de Coimbra, Portugal
| |
Collapse
|
6
|
Brackish and Hypersaline Lakes as Potential Reservoir for Enzymes Involved in Decomposition of Organic Materials on Frescoes. FERMENTATION 2022. [DOI: 10.3390/fermentation8090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study highlights the decomposing role through the hydrolytic activities of fungi isolated from natural environments represented by brackish and hypersaline lakes in Romania. Novel strains belonging to the Penicillium, Aspergillus, and Emericellopsis genera were isolated and screened for the ability to produce extracellular hydrolytic enzymes, i.e., proteases, lipases, amylases, cellulases, xylanases, and pectinases. According to salt requirements, they were classified as moderate halophilic and halotolerant strains. Agar plate-based assays with Tween 80, slide cultures with organic deposits, and quantitative evaluation allowed the selection of Aspergillus sp. BSL 2-2, Penicillium sp. BSL 3-2, and Emericellopsis sp. MM2 as potentially good decomposers of organic matter not only in lakes but also on deposits covering the mural paintings. Experiments performed on painted experimental models revealed that only Penicillium sp. BSL 3-2 decomposed Paraloid B72, transparent dispersion of casein, beeswax, sunflower oil, and soot. Moreover, using microscopic, spectroscopic, and imaging methods, it was proved the efficiency of Penicillium sp. BSL 3-2 for decomposition of organic deposits artificially applied on frescoes fragments.
Collapse
|
7
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Abstract
Cracks on the surface of cementitious composites represent an entrance gate for harmful substances—particularly water—to devastate the bulk of material, which results in lower durability. Autogenous crack-sealing is a significantly limited mechanism due to a combination of the hydration process and calcite nucleation, and self-healing cementitious composites are a research area that require a great deal of scientific effort. In contrast to time-consuming experiments (e.g., only the preparation of an applicable bare concrete sample itself requires more than 28 days), appropriately selected mathematical models may assist in the deeper understanding of self-healing processes via bacteria. This paper presents theoretically oriented research dealing with the application of specific bacteria (B. pseudofirmus) capable of transforming available nutrients into calcite, allowing for the cracks on the surfaces of cementitious materials to be repaired. One of the principal objectives of this study is to analyze the sensitivity of the bacterial growth curves to the system parameters within the context of the logistic model in the Monod approach. Analytically calculated growth curves for various parameters (initial inoculation concentration, initial nutrition content, and metabolic activity of bacteria) are compared with experimental data. The proposed methodology may also be applied to analyze the growth of microorganisms of nonbacterial origin (e.g., molds, yeasts).
Collapse
|
9
|
Abstract
Cultural heritage buildings of stone construction require careful restorative actions to maintain them as close to the original condition as possible. This includes consolidation and cleaning of the structure. Traditional consolidants may have poor performance due to structural drawbacks such as low adhesion, poor penetration and flexibility. The requirement for organic consolidants to be dissolved in volatile organic compounds may pose environmental and human health risks. Traditional conservation treatments can be replaced by more environmentally acceptable, biologically-based, measures, including bioconsolidation using whole bacterial cells or cell biomolecules; the latter include plant or microbial biopolymers and bacterial cell walls. Biocleaning can employ microorganisms or their extracted enzymes to remove inorganic and organic surface deposits such as sulfate crusts, animal glues, biofilms and felt tip marker graffiti. This review seeks to provide updated information on the innovative bioconservation treatments that have been or are being developed.
Collapse
|
10
|
MinION technology for microbiome sequencing applications for the conservation of cultural heritage. Microbiol Res 2021; 247:126727. [PMID: 33652267 DOI: 10.1016/j.micres.2021.126727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 02/02/2023]
Abstract
The MinION single-molecule sequencing system has been attracting the attention of the community of microbiologists involved in the conservation of cultural heritage. The use of MinION for the conservation of cultural heritage is extremely recent, but surprisingly the only few applications available have been exploring many different substrates: stone, textiles, paintings and wax. The use of MinION sequencing is mainly used to address the metataxonomy (with special emphasis on non-cultivable microorganisms) with the effort to identify species involved in the degradation of the substrates. In this review, we show the current applications available on different artworks, showing how this technology can be a useful tool for microbiologists and conservators also in light of its low cost and the easy chemistry.
Collapse
|
11
|
Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L. The Bad and the Good-Microorganisms in Cultural Heritage Environments-An Update on Biodeterioration and Biotreatment Approaches. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E177. [PMID: 33401448 PMCID: PMC7795576 DOI: 10.3390/ma14010177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Cultural heritage objects constitute a very diverse environment, inhabited by various bacteria and fungi. The impact of these microorganisms on the degradation of artworks is undeniable, but at the same time, some of them may be applied for the efficient biotreatment of cultural heritage assets. Interventions with microorganisms have been proven to be useful in restoration of artworks, when classical chemical and mechanical methods fail or produce poor or short-term effects. The path to understanding the impact of microbes on historical objects relies mostly on multidisciplinary approaches, combining novel meta-omic technologies with classical cultivation experiments, and physico-chemical characterization of artworks. In particular, the development of metabolomic- and metatranscriptomic-based analyses associated with metagenomic studies may significantly increase our understanding of the microbial processes occurring on different materials and under various environmental conditions. Moreover, the progress in environmental microbiology and biotechnology may enable more effective application of microorganisms in the biotreatment of historical objects, creating an alternative to highly invasive chemical and mechanical methods.
Collapse
Affiliation(s)
- Adam Pyzik
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (K.C.); (M.D.); (L.D.)
| | | | | | | |
Collapse
|