1
|
Antony BS, Nagarajan C, Devaraj DV, Subbaraj GK. A Systemic Review and Meta-analysis on Natural Resistance-associated Macrophage Protein 1 (3'-Untranslated Region) and Nucleotide-binding Oligomerization Domain-2 (rs8057341) Polymorphisms and Leprosy Susceptibility in Asian and Caucasian Populations. Int J Mycobacteriol 2024; 13:115-125. [PMID: 38916380 DOI: 10.4103/ijmy.ijmy_43_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The current meta-analysis aims to explore the potential correlation between natural resistance-associated macrophage protein 1 (NRAMP1) (3'-Untranslated region [3'-UTR]) and nucleotide-binding oligomerization domain-2 (NOD2 [rs8057341]) gene polymorphisms and their association with leprosy susceptibility in both Asian and Caucasian populations. Datas were retrieved from case control studies with NOD 2 and NRAMP 1 gene polymorphism associated with leprosy disease. Leprosy emerges as a particularly distinctive ailment among women on a global scale. The NRAMP1 (3'-UTR) and NOD2 (rs8057341) genetic variations play a crucial role in the progression of leprosy. A systematic review of relevant case-control studies was conducted across several databases, including ScienceDirect, PubMed, Google Scholar, and Embase. Utilizing MetaGenyo and Review Manager 5.4 Version, statistical analyses were carried out. Nine case-control studies totaling 3281 controls and 3062 leprosy patients are included in the research, with the objective of examining the potential association between NRAMP1 (3'-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk. The review methodology was registered in PROSPERO (ID520883). The findings reveal a robust association between NRAMP1 (3'-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk across various genetic models. Although the funnel plot analysis did not identify publication bias, bolstering these findings and elucidating potential gene-gene and gene-environment interactions require further comprehensive epidemiological research. This study identified a strong correlation between polymorphisms in the NOD2 (rs8057341) genes and susceptibility to leprosy across two genetic models. Further comprehensive epidemiological investigations are warranted to validate these findings and explore potential interactions between these genes and environmental factors.
Collapse
Affiliation(s)
- Bibin Savio Antony
- Department of Medical Genetics, Faculty of Allied Health Science, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Chitra Nagarajan
- Department of Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Danis Vijay Devaraj
- Department of Microbiology, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Chengalpattu, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Department of Medical Genetics, Faculty of Allied Health Science, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
2
|
Meng C, Chen G, Wen D, Dong L, Cui X, Jing X, Cui J, Gao Y, Liu Y, Bu H, Wu C. The expression of Nramp1 modulates the uptake of Mycobacterium tuberculosis by macrophages through alternating inflammatory responses. Tuberculosis (Edinb) 2023; 143:102414. [PMID: 37820457 DOI: 10.1016/j.tube.2023.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Natural-resistance-associated macrophage protein-1 (NRAMP1) is a transmembrane protein of the mammalian SLC11 gene family. Previously, genome-wide association study (GWAS) have shown that the single nucleotide polymorphisms (SNPs) of NRAMP1 are associated with human susceptibility to tuberculosis (TB), and the detection of clinical samples have demonstrated that the expression levels of NRAMP1 are concomitant with the susceptibility to TB in humans and cows, but underlying mechanism is unknown. In this study, we completed a series of experiments to investigate how the expression of Nramp1 affects the infection of macrophages with Mycobacterium tuberculosis (Mtb). We found that the increase of Nramp1 expression induced the decrease of Mtb infection efficiency and the higher-level expression of pro-inflammatory cytokines and chemokines, However, the knockdown of Nramp1 promoted the efficiency of bacilli infection to macrophages and induced lower-levels of expression of pro-inflammatory cytokines and chemokines. Collectively, the results in this study demonstrated that the levels of Nramp1 expression affect Mtb infection of macrophage and regulate pro-inflammatory responses of macrophages to Mtb infection, indicating the population with the low-expression level of NRAMP1 predispose to Mtb infection and TB development, and suggesting SNPs in NRAMP1 modulate the host susceptibility to TB through its regulation of NRAMP1 expression.
Collapse
Affiliation(s)
- Chaoqun Meng
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan, 030006, Shanxi province, China
| | - Guangxin Chen
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Da Wen
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Li Dong
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Xiaogang Cui
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Xuejiao Jing
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Jia Cui
- Department of Microbiology, Changzhi Medical College, 161 Jiefang Road, Changzhi, 046000, Shanxi province, China
| | - Yuanting Gao
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Yue Liu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Hongli Bu
- The Fourth People's Hospital of Taiyuan, 231 Xikuang Street, Taiyuan, 030053, Shanxi province, China.
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi province, China; The Fourth People's Hospital of Taiyuan, 231 Xikuang Street, Taiyuan, 030053, Shanxi province, China; The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan, 030006, Shanxi province, China.
| |
Collapse
|
3
|
Banos G. Selective breeding can contribute to bovine tuberculosis control and eradication. Ir Vet J 2023; 76:19. [PMID: 37620894 PMCID: PMC10464393 DOI: 10.1186/s13620-023-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Bovine tuberculosis (bTB) persists in many countries having a significant impact on public health and livestock industry finances. The incidence and prevalence of new cases in parts of the UK and elsewhere over the past decades warrant intensified efforts towards achieving Officially Tuberculosis Free (OTF) status in the respective regions. Genetic selection aiming to identify and remove inherently susceptible animals from breeding has been proposed as an additional measure in ongoing programmes towards controlling the disease. The presence of genetic variation among individual animals in their capacity to respond to Mycobacterium bovis exposure has been documented and heritability estimates of 0.06-0.18 have been reported. Despite their moderate magnitude, these estimates suggest that host resistance to bTB is amenable to improvement with selective breeding. Although relatively slow, genetic progress can be constant, cumulative and permanent, thereby complementing ongoing disease control measures. Importantly, mostly no antagonistic genetic correlations have been found between bTB resistance and other animal traits suggesting that carefully incorporating the former in breeding decisions should not adversely affect bovine productivity. Simulation studies have demonstrated the potential impact of genetic selection on reducing the probability of a breakdown to occur or the duration and severity of a breakdown that has already been declared. Furthermore, research on the bovine genome has identified multiple genomic markers and genes associated with bTB resistance. Nevertheless, the combined outcomes of these studies suggest that host resistance to bTB is a complex, polygenic trait, with no single gene alone explaining the inherent differences between resistant and susceptible animals. Such results support the development of accurate genomic breeding values that duly capture the collective effect of multiple genes to underpin selective breeding programmes. In addition to improving host resistance to bTB, scientists and practitioners have considered the possibility of reducing host infectivity. Ongoing studies have suggested the presence of genetic variation for infectivity and confirmed that bTB eradication would be accelerated if selective breeding considered both host resistance and infectivity traits. In conclusion, research activity on bTB genetics has generated knowledge and insights to support selective breeding as an additional measure towards controlling and eradicating the disease.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland's Rural College (SRUC), Department of Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
4
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
5
|
Chen Z, Yao D, Guo D, Sun Y, Liu L, Kou M, Yang X, Di S, Cai J, Wang X, Niu B. A functional mutation associated with piglet diarrhea partially by regulating the transcription of porcine STAT3. Front Vet Sci 2022; 9:1034187. [DOI: 10.3389/fvets.2022.1034187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to search for functional mutations within the promoter of porcine STAT3 and to provide causative genetic variants associated with piglet diarrhea. We firstly confirmed that STAT3 expressed higher in the small intestine than in the spleen, stomach and large intestine of SPF piglets, respectively (P < 0.05). Then, 10 genetic variations in the porcine STAT3 promoter region was identified by direct sequencing. Among them, three mutations SNP1: g.−870 G>A, SNP2: g.−584 A>C and a 6-bp Indel in the promoter region that displayed significant differential transcriptional activities were identified. Association analyses showed that SNP1: g.−870 G>A was significantly associated with piglet diarrhea (P < 0.05) and the GG animals had lower diarrhea score than AA piglets (P < 0.01) in both Min and Landrace population. Further functional analysis revealed that E2F6 repressed the transcriptional efficiency of STAT3 in vitro, by binding the G allele of SNP1. The present study suggested that SNP1: g.−870 G>A was a piglet diarrhea-associated variant that directly affected binding with E2F6, leading to changes in STAT3 transcription which might partially contribute to piglet diarrhea susceptibility or resistance.
Collapse
|
6
|
Sukhno VV, Vashchenko PA, Saenko AM, Zhukorskyi OM, Tserenyuk OM, Kryhina NV. Association of Fut1 and Slc11a1 gene polymorphisms with productivity traits of Large White pigs. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The purpose of our work was to study the polymorphism of genes associated with disease resistance and to search for their associations with productive traits in the population of the Ukrainian Large White pigs. For this study, 50 pigs were used, observations and measurements were carried out at the age from birth to 180 days. Genetic studies were carried out in a certified laboratory of the Institute of Pig Breeding and Agroindustrial Production. In the study of fucosyltransferase 1 and solute carrier family 11 member 1 genes, polymorphism was found in three of the five analyzed loci. In the Ukrainian Large White subpopulation of pigs the informativeness of these gene polymorphisms was at the optimal level for associative analysis, Polymorphism Information Content was greater than 0.3 in two loci. A sufficiently high level of Polymorphism Information Content indicates the value of this breed to preserve the biodiversity of pigs. The distribution of genotypes at some loci of the solute carrier family 11 member 1 gene was characterized by a deviation from the theoretically expected one due to the increase in the frequency of the heterozygous genotype. There was also a statistically confirmed deviation of the genotypes’ distribution from the normal and polymorphism fucosyltransferase 1 gene, but in this case in the direction of increasing the frequency of both homozygous variants. These results indicate the presence of a certain selection pressure on the mentioned polymorphisms and their possible impact on productive traits. The influence of solute carrier family 11 member 1 gene polymorphism on the weight of pigs at the age of 120 and 180 days, the average daily gain recorded in the period 28–120 days and from birth to 180 days, as well as on the backfat thickness, was established. The preferred genotype is TT, which can be used in breeding to obtain more productive animals with increased disease resistance, but in the selection of animals at this locus, it is necessary to control the backfat thickness and prevent breeding of pigs that may worsen this trait.
Collapse
|
7
|
Single Nucleotide Polymorphisms, Gene Expression and Economic Evaluation of Parameters Associated with Mastitis Susceptibility in European Cattle Breeds. Vet Sci 2022; 9:vetsci9060294. [PMID: 35737346 PMCID: PMC9229636 DOI: 10.3390/vetsci9060294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to explore single nucleotide polymorphisms (SNPs), gene expression and economic evaluation of parameters associated with mastitis susceptibility in Holstein and Brown Swiss dairy cows. Two hundred and forty Holstein and Brown Swiss dairy cows (120 cows of each breed) were used in this study. The investigated dairy cows in each breed were allocated into two equal-sized groups (60 cows each); mastitis tolerant and affected groups. PCR-DNA sequencing of SELL, ABCG2, SLC11A1, FEZL, SOD1, CAT, GPX1, and AhpC/TSA revealed nucleotide sequence variations in the form of SNPs associated with mastitis tolerance/susceptibility in investigated Holstein and Brown Swiss dairy cows. Levels of SELL, SLC11A1 and FEZL gene expression were significantly up-regulated in mastitic Holstein and Brown Swiss dairy cows than in tolerant ones. Meanwhile, ABCG2, SOD1, CAT, GPX1, and AhpC/TSA genes were significantly downregulated. Regarding the economic parameters, significant differences were recorded for net returns and a reduction in the percentage of net profit, as the higher values of net returns were recorded for tolerant dairy cows than mastitic ones in both breeds; moreover, the net profit was reduced by 39% and 27% in mastitic Holstein and Brown Swiss dairy cows, respectively, when compared to tolerant ones. The results herein confirmed the potential significance of investigated genes as candidates for mastitis tolerance/susceptibility in Holstein and Brown Swiss dairy cows. Mastitis also has detrimental impacts on economic efficiency in dairy farms.
Collapse
|
8
|
Wedlich N, Figl J, Liebler-Tenorio EM, Köhler H, von Pückler K, Rissmann M, Petow S, Barth SA, Reinhold P, Ulrich R, Grode L, Kaufmann SHE, Menge C. Video Endoscopy-Guided Intrabronchial Spray Inoculation of Mycobacterium bovis in Goats and Comparative Assessment of Lung Lesions With Various Imaging Methods. Front Vet Sci 2022; 9:877322. [PMID: 35591868 PMCID: PMC9113525 DOI: 10.3389/fvets.2022.877322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) not only poses a zoonotic threat to humans but also has a significant economic impact on livestock production in many areas of the world. Effective vaccines for humans, livestock, and wildlife are highly desirable to control tuberculosis. Suitable large animal models are indispensable for meaningful assessment of vaccine candidates. Here, we describe the refinement of an animal model for bTB in goats. Intrabronchial inoculation procedure via video-guided endoscopy in anesthetized animals, collection of lungs after intratracheal fixation in situ, and imaging of lungs by computed tomography (CT) were established in three goats using barium sulfate as surrogate inoculum. For subsequent infection experiments, four goats were infected with 4.7 × 102 colony-forming units of M. bovis by intrabronchial inoculation using video-guided endoscopy with spray catheters. Defined amounts of inoculum were deposited at five sites per lung. Four age-matched goats were mock-inoculated. None of the goats developed clinical signs until they were euthanized 5 months post infection, but simultaneous skin testing confirmed bTB infection in all goats inoculated with M. bovis. In tissues collected at necropsy, M. bovis was consistently re-isolated from granulomas in lymph nodes, draining the lungs of all the goats infected with M. bovis. Further dissemination was observed in one goat only. Pulmonary lesions were quantified by CT and digital 2D radiography (DR). CT revealed mineralized lesions in all the infected goats ranging from <5 mm to >10 mm in diameter. Small lesions <5 mm predominated. The DR failed to detect small lesions and to determine the exact location of lesions because of overlapping of pulmonary lobes. Relative volume of pulmonary lesions was low in three but high in one goat that also had extensive cavitation. CT lesions could be correlated to gross pathologic findings and histologic granuloma types in representative pulmonary lobes. In conclusion, video-guided intrabronchial inoculation with spray catheters, mimicking the natural way of infection, resulted in pulmonary infection of goats with M. bovis. CT, but not DR, presented as a highly sensitive method to quantify the extent of pulmonary lesions. This goat model of TB may serve as a model for testing TB vaccine efficacy.
Collapse
Affiliation(s)
- Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
- *Correspondence: Elisabeth M. Liebler-Tenorio
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Kerstin von Pückler
- Clinic for Small Animals – Radiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Melanie Rissmann
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Stefanie Petow
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institute, Celle, Germany
| | - Stefanie A. Barth
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | | | - Stefan H. E. Kaufmann
- Director Emeritus, Max Planck Institute for Infection Biology, Berlin, Germany
- Emeritus Group for Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| |
Collapse
|
9
|
Mazorra-Carrillo JL, Alcaraz-López OA, López-Rincón G, Villarreal-Ramos B, Gutiérrez-Pabello JA, Esquivel-Solís H. Host Serum Proteins as Potential Biomarkers of Bovine Tuberculosis Resistance Phenotype. Front Vet Sci 2021; 8:734087. [PMID: 34869715 PMCID: PMC8637331 DOI: 10.3389/fvets.2021.734087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Eradication of bovine tuberculosis (bTB) continues to be a worldwide challenge. The lack of reliable vaccines dampens the control and eradication programs of Mycobacterium bovis infection and spread. Selection and breeding of cattle resistant to M. bovis infection would greatly enhance the effectiveness of bTB eradication programs. Here, we have evaluated the potential of serum proteins as biomarkers of cattle resistance to bTB in Holstein-Friesian cows, 6-8-year-old, born and raised in similar conditions in herds with bTB prevalence >30%. Serum proteins obtained from uninfected cows (bTB-resistant; R) were compared to those from infected cows (bTB-susceptible; S), defined by a negative or positive bTB diagnosis, respectively. bTB diagnosis included: (i) single intradermal (caudal fold) tuberculin test, (ii) whole blood IFN-gamma test, (iii) gross visible lesions in lymph nodes and lungs by inspection at the abattoir, and (iv) a bacteriological culture for M. bovis. Using 2D-GE and LC-ESI-MS/MS, we found higher expression levels of primary amine oxidase (AO), complement component 5 (C5), and serotransferrin (TF) in R cattle than S cattle. In-house developed and standardized ELISAs for these novel biomarkers showed the best sensitivities of 72, 77, 77%, and specificities of 94, 94, 83%, for AO, C5, and TF, respectively. AUC-ROC (95% CI) values of 0.8935 (0.7906-0.9964), 0.9290 (0.8484-1.010), and 0.8580 (0.7291-0.9869) were obtained at cut-off points of 192.0, 176.5 ng/ml, and 2.1 mg/ml for AO, C5, and TF, respectively. These proteins are involved in inflammatory/immunomodulatory responses to infections and may provide a novel avenue of research to determine the mechanisms of protection against bTB. Overall, our results indicate that these proteins could be novel biomarkers to help identify cattle resistant to bTB, which in turn could be used to strengthen the effectiveness of existing eradication programs against bTB.
Collapse
Affiliation(s)
- Jorge Luis Mazorra-Carrillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Omar Antonio Alcaraz-López
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.,Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo López-Rincón
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
10
|
Effect of selected single nucleotide polymorphisms in SLC11A1, ANKRA2, IFNG and PGLYRP1 genes on host susceptibility to Mycobacterium avium subspecies paratuberculosis infection in Indian cattle. Vet Res Commun 2021; 46:209-221. [PMID: 34718924 DOI: 10.1007/s11259-021-09849-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
Abstract
Paratuberculosis (PTB) is a chronic infectious enteritis of ruminants, caused by Mycobacterium avium subspecies paratuberculosis (MAP) that brings huge economic loss to the dairy farmers. The study was conducted to explore the association of selected SNPs in IFNG, SLC11A1, ANKRA2 and PGLYRP1 genes with resistance to PTB disease in Indian cattle population. A case-control resource population was established based on the results of diagnostic tests used for detection of MAP infection status viz. ELISA, Johnin PPD test, faecal microscopy and IS900 blood PCR. The PCR-RFLP method was used for genotyping of SNPs. SNPs rs109453173 in SLC11A1, rs110853455 in IFNG and rs41933863 in ANKRA2 genes were significantly (P<0.05) associated with resistance to MAP infection. For SNP rs109453173, GG genotype and G allele was found to be associated with resistance against MAP infection than CC and CG genotypes and C allele, respectively. For SNP rs110853455, AG genotype was found to be associated with susceptibility to MAP infection than AA and GG genotype. For SNP rs41933863, the AG genotype provided three and six times more resistance against MAP infection than GG and AA genotype. The results of this study are suggestive of SNPs rs109453173, rs110853455 and rs41933863 as potential markers for screening MAP resistant cattle and a breeding programme favouring GG genotype and G allele for rs109453173, AG genotype for rs41933863 and against AG genotype for rs110853455 might confer resistance against MAP infection in Indian cattle. However, investigation of these SNPs in an independent and larger population will warrant the strength of association for resistance against MAP infection in cattle.
Collapse
|