1
|
Huo D, Westrick NM, Nelson A, Kabbage M, Koch P. The Role of Oxalic Acid in Clarireedia jacksonii Virulence and Development on Creeping Bentgrass. PHYTOPATHOLOGY 2024; 114:2394-2400. [PMID: 39145740 DOI: 10.1094/phyto-03-24-0094-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dollar spot is a destructive foliar disease of amenity turfgrass caused by Clarireedia spp. fungi, mainly C. jacksonii, on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as Sclerotinia sclerotiorum; however, the role of OA in the pathogenic development of C. jacksonii remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (oah) gene that is required for the biosynthesis of OA was deleted from a C. jacksonii wild-type (WT) strain. Two independent knockout mutants, ΔCjoah-1 and ΔCjoah-2, were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants ΔCjoah-1 and ΔCjoah-2 exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in C. jacksonii virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daowen Huo
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Nathaniel M Westrick
- Valley Laboratory, Connecticut Agricultural Experiment Station, Windsor, CT, U.S.A
| | - Ashley Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, U.S.A
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Paul Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
2
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Kumar S, Panwar P, Sehrawat N, Upadhyay SK, Sharma AK, Singh M, Yadav M. Oxalic acid: recent developments for cost-effective microbial production. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Organic acids are the important compounds that have found numerous applications in various industries. Oxalic acid is one of the important organic acids with different industrial applications. Different microbes have been reported as important sources of various organic acids. Majority of studies have been carried on fungal sources for oxalic acid production. Aspergillus sp. has been found efficient oxalic acid producer. Microbial productions of metabolites including organic acids are considered cost effective and eco-friendly approach over chemical synthesis. Fermentative production of microbial oxalic acid seems to be a good alternative as compared to chemical methods. Microbial production of oxalic acid still requires the extensive and elaborated research for its commercial production from efficient microbes using cost effective substrates. The present text summarizes the production of oxalic acid, its applications and recent developments in the direction of fermentative production of microbial oxalic acid.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Bioinformatics , Janta Vedic College , Baraut-Baghpat , Uttar Pradesh 250611 , India
| | - Priya Panwar
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Nirmala Sehrawat
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Anil Kumar Sharma
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Manoj Singh
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Mukesh Yadav
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| |
Collapse
|
4
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
5
|
Zhang H, Dong Y, Zhou Y, Hu J, Lamour K, Yang Z. Clarireedia hainanense: A New Species Is Associated with Dollar Spot of Turfgrass in Hainan, China. PLANT DISEASE 2022; 106:996-1002. [PMID: 34698519 DOI: 10.1094/pdis-08-21-1853-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Clarireedia contains multiple species causing dollar spot (DS) on turfgrass worldwide. In November 2020, 119 Clarireedia isolates were obtained from symptomatic seashore paspalum at golf courses in Hainan province and identified to species level based on partial sequence of the internal transcribed spacer (ITS) region. A total of 45 and 22 isolates were identified as C. paspali and C. monteithiana, respectively; the remaining 52 isolates defined a new clade. Isolates from this clade were further selected for phylogenetic, morphological, and biological analyses. Maximum likelihood and Bayesian methods were implemented to obtain phylogenetic trees for partial sequences of the ITS, EF-1α, and McM7 genes. The selected isolates consistently fell into a distinct, well-supported clade within Clarireedia. Morphological and biological characteristics were observed among the different species in Clarireedia. Altogether, this study described a new species, Clarireedia hainanense, which has widespread distribution in Hainan, China. These findings may have important implications for the management of DS disease.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yinglu Dong
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, P. R. China
| | - Jian Hu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
6
|
Sapkota S, Catching KE, Raymer PL, Martinez-Espinoza AD, Bahri BA. New Approaches to an Old Problem: Dollar Spot of Turfgrass. PHYTOPATHOLOGY 2022; 112:469-480. [PMID: 34406790 DOI: 10.1094/phyto-11-20-0505-rvw] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dollar spot, caused by fungal pathogens Clarireedia spp. (formerly Sclerotinia homoeocarpa), is the most common and widely distributed disease of turfgrass worldwide. It can drastically reduce the quality of turfgrass species and affect their aesthetic value and playability. Management of dollar spot typically includes a costly program of multiple application of fungicides within a growing season. Consequently, there have been reported cases of fungicide resistance in populations of Clarireedia spp. Host resistance could be an important component of dollar spot management; however, this approach has been hampered by the lack of sources of resistance because nearly all known warm- and cool-season turfgrass species are susceptible. With the recent advancement in genome sequencing technologies, studies on pathogen genomics and host-pathogen interactions are emerging with the hope of revealing candidate resistance genes in turfgrass and genes for virulence and pathogenicity in Clarireedia spp. Large-scale screening of turfgrass germplasm and quantitative trait locus (QTL) analysis for dollar spot resistance are important for resistance breeding, but only a handful of such studies have been conducted to date. This review summarizes currently available information on the dollar spot pathosystem, taxonomy, pathogen genomics, host-pathogen interaction, genetics of resistance, and QTL mapping and also provides some thoughts for future research prospects to better manage this disease.
Collapse
Affiliation(s)
- Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Katherine E Catching
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Paul L Raymer
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
- Department of Crop and Soil Science, University of Georgia, Griffin, GA 30223
| | | | - Bochra A Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| |
Collapse
|