1
|
Li R, Ding X, Lei M, Li P, Giannenas I, Wang J, Zhu W. The impact of combined thymol and rosmarinic acid on the intestinal microbiota and barrier function of the piglets challenged by Escherichia coli K88. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:131-144. [PMID: 39967693 PMCID: PMC11834115 DOI: 10.1016/j.aninu.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
It has been found that thymol (Thy) and rosmarinic acid (Ros-A) improve the growth performance of piglets and relieve intestinal inflammation in animals. The effects of Thy and Ros-A separately or in combination (Thy × Ros-A) on the intestinal function and health of piglets challenged with Escherichia coli K88 (E. coli K88) were investigated. A total of 30 piglets aged 21 d were assigned to 5 groups (n = 6). The control (Con) and K88 groups piglets received a basal diet, while the Thy, Ros-A, and Thy × Ros-A groups were fed a basal diet supplemented with 500 mg/kg Thy, 500 mg/kg Ros-A, and 250 mg/kg Thy + 250 mg/kg Ros-A, respectively. On the 19th and 20th day, piglets in the K88, Thy, Ros-A, and Thy × Ros-A groups were orally administered 10 mL of phosphate-buffered saline (PBS) containing approximately 1 × 109 CFU/mL of E. coli K88, while the Con group received an equal volume of PBS. The results showed that the Thy × Ros-A treatment reduced the damage to ileal villi induced by the E. coli K88 challenge, leading to longer villi in the ileum (P < 0.05). Thy and Ros-A modulated the composition of the ileal microbiota. Compared to the K88 group, the Thy × Ros-A group had a higher abundance of Lactobacillus and Romboutsia, while Escherichia-Shigella and Desulforvibrio were lower (P < 0.05). Additionally, the Thy × Ros-A group showed elevated levels of gene and protein expressions for zonula occludens-1, occludin, and claudin-1 compared to the K88 group (P < 0.05). In conclusion, combining Thy and Ros-A reduced ileal damage and relieved the inflammation in weaned piglets challenged with E. coli K88 by regulating intestinal microflora and improving barrier function.
Collapse
Affiliation(s)
- Runlin Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuedong Ding
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingkang Lei
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilias Giannenas
- Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Zhu Z, Huang B, Sun N, Yu X, Du Z, Li A, Huang C. Variations in gut microbiota composition and reproductive hormone levels between laying and broody Muscovy ducks. Poult Sci 2024; 103:104399. [PMID: 39490129 PMCID: PMC11550041 DOI: 10.1016/j.psj.2024.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
High broodiness in Muscovy ducks impedes animal husbandry growth. The interaction between endocrine hormones and gut microbiota has been proven to play a crucial role in reproductive performance, and whether it can regulate the broody behavior of Muscovy ducks requires further research. Nine laying ducks (Laying group) and nine broody ducks (Broodiness group) were selected. Corresponding serum, ileum, and cecum chyme were collected for further research. The results showed that, compared to the laying group, the serum concentration of prolactin decreased, while the levels of Mullerian inhibiting substance, follicle-stimulating hormone, and follistatin increased in the broodiness group (P < 0.05). 16S rDNA sequencing showed that, the broodiness group exhibited lower abundance levels of Rothia, Streptococcus, and Lactobacillus, whereas the abundance of Turicibacter, Aliicoccus, and Facklamia was higher in the ileum compared to the laying group (P < 0.05). In the cecum, the broodiness group exhibits a significant reduction in the abundance of Butyricicoccus and unclassified_f_Rikenellaceae, while the abundance of Christensenellaceae_R-7_group, Ruminococcus_torques_group, Parabacteroides, norank_f_Oscillospiraceae, Cloacibacillus, Sellimonas, Shuttleworthia, norank_f_UCG-010, unclassified_f_Lachnospiraceae, Oscillospira, Synergistes, Family_XIII_AD3011_group and Eubacterium_nodatum_group is higher compared to the laying group. A Spearman correlation analysis reveals that both in the ileum and cecum, serum hormones exhibit significant correlations with the top 20 abundant intestinal microbial genera. Among these, serum follistatin has most entries of significant correlations with the detected microbial genera (P < 0.05). In conclusion, the broody behavior of Muscovy ducks can be modulated by the interaction between hormones and gut microbiota. Notably, the relationship between Follistatin and the composition of gut microbiota, specifically Firmicutes, is the most prominent.
Collapse
Affiliation(s)
- Zhihao Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bingbing Huang
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Ningning Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziyuan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Yang Z, Zhang D, Jiang Z, Peng J, Wei H. The formidable guardian: Type 3 immunity in the intestine of pigs. Virulence 2024; 15:2424325. [PMID: 39497434 PMCID: PMC11552283 DOI: 10.1080/21505594.2024.2424325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
Well-intestinal health is crucial for better growth performance in pigs. Type 3 immunity, which is one of the three types of immune responses in mammals, plays a vital role in maintaining intestinal homoeostasis. Therefore, we initially introduce the type 3 immune cells in the intestine of pigs, including their distribution, development, and function. We then discuss the type 3 immune response under infection, encompassing bacterial, fungal, and viral infections. It also covers two major stresses in pigs: heat stress and weaning stress. Lastly, we discuss the effects of various nutrients and feed additives on the regulation of the type 3 immune response in pigs under infection. This review aims to contribute to the understanding of the interaction between infection and type 3 immunity in pigs and to illustrate how various nutrients modulate the type 3 immune response in pigs under diverse infections.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dou Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhoudan Jiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Huang C, Yu X, Du Z, Zhu Z, Shi C, Li A, Wang F. Pyrroloquinoline Quinone Alleviates Intestinal Inflammation and Cell Apoptosis via the MKK3/6-P38 Pathway in a Piglet Model. Int J Mol Sci 2024; 25:9723. [PMID: 39273669 PMCID: PMC11395797 DOI: 10.3390/ijms25179723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigates the underlying mechanism through which dietary supplementation of pyrroloquinoline quinone disodium (PQQ) alleviates intestinal inflammation and cell apoptosis in piglets challenged with lipopolysaccharide (LPS). Seventy-two barrows were divided into three groups: control (CTRL), LPS challenged (LPS), and LPS challenged with PQQ supplementation (PQQ + LPS). On d 7, 11, and 14, piglets received intraperitoneal injections of LPS or 0.9% of NaCl (80 μg/kg). After a 4 h interval following the final LPS injection on d 14, blood samples were obtained, and all piglets were euthanized for harvesting jejunal samples. The results showed that dietary supplementation of PQQ improved the damage of intestinal morphology, increased the down-regulated tight junction proteins, and reduced the increase of serum diamine oxidase activity, the intestinal fatty acid binding protein, and TNF-α levels in piglets challenged with LPS (p < 0.05). The proteomics analysis revealed a total of 141 differentially expressed proteins (DEPs), consisting of 64 up-regulated DEPs and 77 down-regulated DEPs in the PQQ + LPS group compared to the LPS group. The KEGG pathway analysis indicated enrichment of the tight junction pathway and the apoptosis pathway (p < 0.05). Compared to the LPS group, the piglets in the PQQ + LPS group had increased levels of Bcl-2 protein, reduced positive apoptosis signals, and a decrease in the abundance of MKK 3/6 and p-p38 proteins (p < 0.05). In conclusion, dietary supplementation of PQQ could alleviate jejunal inflammatory damage and cell apoptosis in piglets challenged with LPS through the MKK3/6-p38 signaling pathway.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Ziyuan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Zhihao Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| |
Collapse
|
5
|
Yang F, Yang F, Huang J, Yu H, Qiao S. Microcin C7 as a Potential Antibacterial-Immunomodulatory Agent in the Postantibiotic Era: Overview of Its Bioactivity Aspects and Applications. Int J Mol Sci 2024; 25:7213. [PMID: 39000321 PMCID: PMC11241378 DOI: 10.3390/ijms25137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.
Collapse
Affiliation(s)
- Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
6
|
Huang C, Yu X, Shi C, Wang M, Li A, Wang F. Pyrroloquinoline quinone supplementation attenuates inflammatory liver injury by STAT3/TGF-β1 pathway in weaned piglets challenged with lipopolysaccharide. Br J Nutr 2024; 131:1352-1361. [PMID: 38155410 DOI: 10.1017/s0007114523002970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-β1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-β1 pathway in piglets challenged with LPS.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing100193, People's Republic of China
| | - Mengshi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing100193, People's Republic of China
| |
Collapse
|
7
|
Ma C, Wang F, Zhu J, Wang S, Liu Y, Xu J, Zhao Q, Qin Y, Si W, Zhang J. 18Beta-Glycyrrhetinic Acid Attenuates H 2O 2-Induced Oxidative Damage and Apoptosis in Intestinal Epithelial Cells via Activating the PI3K/Akt Signaling Pathway. Antioxidants (Basel) 2024; 13:468. [PMID: 38671916 PMCID: PMC11047483 DOI: 10.3390/antiox13040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress causes gut dysfunction and is a contributing factor in several intestinal disorders. Intestinal epithelial cell survival is essential for maintaining human and animal health under oxidative stress. 18beta-Glycyrrhetinic acid (GA) is known to have multiple beneficial effects, including antioxidant activity; however, the underlying molecular mechanisms have not been well established. Thus, the present study evaluated the therapeutic effects of GA on H2O2-induced oxidative stress in intestinal porcine epithelial cells. The results showed that pretreatment with GA (100 nM for 16 h) significantly increased the levels of several antioxidant enzymes and reduced corresponding intracellular levels of reactive oxidative species and malondialdehyde. GA inhibited cell apoptosis via activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, as confirmed by RNA sequencing. Further analyses demonstrated that GA upregulated the phosphorylation levels of PI3K and Akt and the protein level of B cell lymphoma 2, whereas it downregulated Cytochrome c and tumor suppressor protein p53 levels. Moreover, molecular docking analysis predicted the binding of GA to Vasoactive intestinal peptide receptor 1, a primary membrane receptor, to activate the PI3K/Akt signaling pathway. Collectively, these results revealed that GA protected against H2O2-induced oxidative damage and cell apoptosis via activating the PI3K/Akt signaling pathway, suggesting the potential therapeutic use of GA to alleviate oxidative stress in humans/animals.
Collapse
Affiliation(s)
- Cui Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Fuxi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Animal Science and Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Shiyi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqing Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianfang Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Wei Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| |
Collapse
|
8
|
Mohamad Ishak NS, Kikuchi M, Ikemoto K. Dietary pyrroloquinoline quinone hinders aging progression in male mice and D-galactose-induced cells. FRONTIERS IN AGING 2024; 5:1351860. [PMID: 38487591 PMCID: PMC10938241 DOI: 10.3389/fragi.2024.1351860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Background: Understanding and promoting healthy aging has become a necessity in the modern world, where life expectancy is rising. The prospective benefits of the antioxidant pyrroloquinoline quinone (PQQ) in healthy aging are promising. However, its role in aging remains unclear. Thus, this study aimed to investigate the effect of PQQ on preventing the progression of aging and to explore its underlying molecular mechanisms. Methods: Naturally aged C57BL/6J male mice were fed a normal diet with or without PQQ (20 mg/kg/day) for 10 weeks. Body composition was measured by bioimpedance at weeks 0 and 8. The integument conditions were evaluated at weeks 0, 4, and 8. Muscle strength and function were examined at week 8. At the ninth week, computed tomography images of the mice were captured, and blood and tissue samples were collected. The levels of inflammatory cytokines in the gastrocnemius muscle were measured, and the muscle fiber cross-sectional area in the soleus muscle was examined. Additionally, a D-galactose (D-gal)-induced cell aging model was used to study the effects of PQQ intervention on cell proliferation, senescence, differentiation, ROS levels, and mitochondrial function in myoblasts (C2C12). Cell proliferation and monolayer permeability of D-gal-induced intestinal epithelial cells (IEC6) were also examined. Results: Aged mice suffered from malnutrition; however, PQQ supplementation ameliorated this effect, possibly by improving metabolic dysfunction and small intestinal performance. PQQ prevented rapid loss of body fat and body fluid accumulation, attenuated muscle atrophy and weakening, reduced chronic inflammation in skeletal muscles, and improved skin and coating conditions in aged mice. Furthermore, PQQ intervention in D-gal-treated C2C12 cells improved mitochondrial function, reduced cellular reactive oxygen species (ROS) levels and senescence, and enhanced cell differentiation, consequently preventing age-related muscle atrophy. In addition, PQQ increased cell proliferation in D-gal-treated IEC6 cells and consequently improved intestinal barrier function. Conclusion: PQQ could hinder the aging process and particularly attenuate muscle atrophy, and muscle weakness by improving mitochondrial function, leading to reduced age-related oxidative stress and inflammation in muscles. PQQ may also ameliorate malnutrition caused by intestinal barrier dysfunction by enhancing IEC proliferation. This study provides evidence for the role of PQQ in aging and suggests that PQQ may be a potential nutritional supplementation that can be included in healthy aging strategies.
Collapse
|
9
|
Shao D, Liu L, Tong H, Shi S. Dietary pyrroloquinoline quinone improvement of the antioxidant capacity of laying hens and eggs are linked to the alteration of Nrf2/HO-1 pathway and gut microbiota. Food Chem X 2023; 20:101021. [PMID: 38144785 PMCID: PMC10740097 DOI: 10.1016/j.fochx.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Pyrroloquinoline quinone disodium (PQQ·Na2) has been considered a human food supplement for human health promotion with its antioxidant properties. To determine whether PQQ·Na2 had similar functions to improve the antioxidant ability of layers and eggs, 180 laying hens were fed with 0 or 0.4 mg/kg PQQ·Na2 diets. Supplementation with PQQ·Na2 increased the albumen height, Haugh unit of the eggs. PQQ·Na2 also led to a higher glutathione peroxidase (GSH-Px) concentration in plasma and a lower malondialdehyde (MDA) content in the liver and egg yolk. Similarly, liver gene and protein expression of nuclear factor erythroid 2-related 2 (Nrf2) and heme oxygenase 1 (HO-1) were up-regulated by PQQ·Na2. Moreover, PQQ·Na2 increased the abundance of Firmicutes, Microbacterium, Erysipelatoclostridium, Mailhella, Lachnospiraceae_UCG-010, and Herbaspirillum in gut. Overall, these results suggested PQQ·Na2 increased the antioxidant ability of layers and eggs which might be in connection with the activation of the Nrf2/HO-1 pathway and optimized gut microflora.
Collapse
Affiliation(s)
- Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Liangji Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| |
Collapse
|
10
|
Shi C, Yu Z, Wang Z, Ning R, Huang C, Gao Y, Wang F. Dietary supplementation with pyrroloquinoline quinone promotes growth, relieves weaning stress, and regulates metabolism of piglets compared with adding zinc oxide. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:409-419. [PMID: 38046955 PMCID: PMC10689886 DOI: 10.1016/j.aninu.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 12/05/2023]
Abstract
Hindered growth often occurs because of psychological and environmental stress during the weaning period of piglets. This study aimed to compare the effects of growth performance, diarrhea indices, digestibility of nutrients, antioxidant capacity, neurotransmitters levels and metabolism of weaned pigs fed diets supplemented with pyrroloquinoline quinone (PQQ) and zinc oxide (ZnO). Pigs weaned at d 28 (n = 108) were fed with three different diets including: the basal diet (CTRL group), the basal diet supplemented with 3.0 mg/kg PQQ (PQQ group) and the basal diet containing 1,600 mg/kg ZnO (ZNO group). During the first 14 d, weaned pigs fed the diet supplemented with PQQ and ZnO decreased feed to gain ratio and diarrhea rate (P < 0.01). Compared with the CTRL group, average daily gain was increased in weaned pigs in the PQQ group from d 15 to 28 (P = 0.03). Compared with the CTRL group, pigs fed PQQ and ZnO supplemented diets showed improved apparent total tract digestibility (ATTD) of nutrients (P ≤ 0.05). During the overall experimental period, the concentration of malondialdehyde was decreased in plasma of pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). At d 28, the concentration of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) was lower in plasma of weaned pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). There was no difference between the PQQ and ZNO group in growth performance, ATTD of nutrition, antioxidant capacity and neurotransmitters levels. PQQ increased 3-methoxy-4-hydroxymandelate (P < 0.05) compared with the CTRL group. According to metabolomic analysis, erucamide, formononetin and 3-methyl-L-histidine were up-regulated in the PQQ group (P < 0.05). Compared with the CTRL group, aloesin and dibutyl adipate were down-regulated in the PQQ group (P < 0.05). In conclusion, similar to ZnO, PQQ improves growth performance, digestibility of nutrients, antioxidant capacity, neuromodulation and metabolism of weaned pigs. Thus, like ZnO, PQQ can be effectively applied in weaned pigs.
Collapse
Affiliation(s)
- Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zirou Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zijie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ran Ning
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youjun Gao
- Changmao Biochemical Engineering Company, Changzhou 213000, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Liu X, Jiang W, Lu G, Qiao T, Gao D, Zhang M, Cai H, Chai L, Yi W, Lv Z. The Potential Role of Pyrroloquinoline Quinone to Regulate Thyroid Function and Gut Microbiota Composition of Graves' Disease in Mice. Pol J Microbiol 2023; 72:443-460. [PMID: 38095308 PMCID: PMC10725160 DOI: 10.33073/pjm-2023-042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Graves' disease (GD) is an autoimmune disorder disease, and its prevalence continues to increase worldwide. Pyrroloquinoline quinone (PQQ) is a naturally antioxidant compound in milk, vegetables, and meat. We aim to identify the treatment efficacy of PQQ on GD and its regulatory effect on intestinal microbiota. The GD mice model was built by an adenovirus expressing autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289). Fecal samples were collected for 16S rDNA sequencing after PQQ pretreatments (20, 40, or 60 mg/kg BW/day) for 4 weeks. Thyroid and intestine functions were measured. The levels of serum TSHR and T4 were significantly raised, and the thyroid gland size was typically enlarged in the GD group than in controls, reversed by PQQ therapy. After PQQ replenishment, IL6 and TNFα levels in small intestine tissues were lower than those in the GD group, with Nrf2 and HO1 levels improved. Also, the PQQ supplement could maintain the mucosal epithelial barrier impaired by GD. In microbial analyses, PQQ treatment could prompt the diversity recovery of gut microbiota and reconstruct the microbiota composition injured by GD. Lactobacillus served as the most abundant genus in all groups, and the abundance of Lactobacillus was increased in the GD group than in control and PQQ groups. Besides, Lactobacillus was highly correlative with all samples and the top 50 genera. PQQ supplementation regulates thyroid function and relieves intestine injury. PQQ changes the primary composition and abundance of GD's intestine microbiota by moderating Lactobacillus, which may exert in the pathogenesis and progression of GD.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Nuclear Medicine, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, People’s Republic of China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ganghua Lu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tingting Qiao
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Dingwei Gao
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mengyu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Wanwan Yi
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, People’s Republic of China
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Lv Y, Zhang QD, Chang LM, Yang DL, Riaz L, Li C, Chen XH, Jiang JP, Zhu W. Multi-omics provide mechanistic insight into the Pb-induced changes in tadpole fitness-related traits and environmental water quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114207. [PMID: 36274322 DOI: 10.1016/j.ecoenv.2022.114207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Water pollution from lead/Pb2+ poses a significant threat to aquatic ecosystems, and its repercussions on aquatic animals have received considerable attention. Although Pb2+ has been found to affect numerous aspects of animals, including individual fitness, metabolic status, and symbiotic microbiota, few studies have focused on the associations between Pb2+-induced variations in fitness, metabolome, symbiotic microbiome, and environmental parameters in the same system, limiting a comprehensive understanding of ecotoxicological mechanisms from a holistic perspective. Moreover, most ecotoxicological studies neglected the potential contributions of anions to the consequences generated by inorganic lead compounds. We investigated the effects of Pb(NO3)2 at environmentally relevant concentrations on the Rana omeimontis tadpoles and the water quality around them, using blank and NaNO3-treated groups as control. Results showed that Pb(NO3)2 not only induced a rise in water nitrite level, but exposure to this chemical also impaired tadpole fitness-related traits (e.g., growth and development). The impacts on tadpoles were most likely a combination of Pb2+ and NO3-. Tissue metabolomics revealed that Pb(NO3)2 exposure influenced animal substrate (i.e., carbohydrate, lipid, and amino acid) and prostaglandin metabolism. Pb(NO3)2 produced profound shifts in gut microbiota, with increased Proteobacteria impairing Firmicutes, resulting in higher aerobic and possibly pathogenic bacteria. NaNO3 also influenced tadpole metabolome and gut microbiome, in a manner different to that of Pb(NO3)2. The presence of NO3- seemed to counteract some changes caused by Pb2+, particularly on the microbiota. Piecewise structural equation model and correlation analyses demonstrated connections between tissue metabolome and gut microbiome, and the variations in tadpole phenotypic traits and water quality were linked to changes in tissue metabolome and gut microbiome. These findings emphasized the important roles of gut microbiome in mediating the effects of toxin on aquatic ecosystem. Moreover, it is suggested to consider the influences of anions in the risk assessment of heavy metal pollutions.
Collapse
Affiliation(s)
- Yan Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qun-De Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Duo-Li Yang
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
13
|
Sun J, Chen W, Yuan Z. Characterization of Intestinal Microbiota in Lambs with Different Susceptibility to Escherichia coli F17. Vet Sci 2022; 9:vetsci9120670. [PMID: 36548832 PMCID: PMC9782581 DOI: 10.3390/vetsci9120670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diarrhea is one of the most commonly reported diseases in young farm animals. Escherichia coli (E. coli) F17 is one of the major pathogenic bacteria responsible for diarrhea. However, the pathogenicity of diarrhea in lambs involving E. coli F17 strains and how E. coli F17 infection modifies lambs' intestinal microbiota are largely unknown. To evaluate diarrhea in newborn lambs with an infection of E. coli F17, 50 lambs were selected for challenge experiments and divided into four groups, namely, a high-dose challenge group, low-dose challenge group, positive control group, and negative control group. The E. coli F17 challenge experiments caused diarrhea and increased mortality in the experimental lamb population, with a higher prevalence (90%), mortality (35%), and rapid onset time (4-12 h) being observed in the high-dose challenge group than the results observed in the low-dose challenge group (75%, 10%, 6-24 h, respectively). After the challenge experiment, healthy lambs in the high-dose challenge group and severely diarrheic lamb in the low-dose challenge group were identified as lambs sensitive/resistant to E. coli F17 (E. coli F17 -resistant/-sensitive candidate, AN/SE) according to the histopathological detection. Results of intestinal contents bacteria plate counting revealed that the number of bacteria in the intestinal contents of SE lambs was 102~3-fold greater than that of the AN lambs, especially in the jejunum. Then, 16S rRNA sequencing was conducted to profile the intestinal microbiota using the jejunal contents, and the results showed that SE lambs had higher Lactococcus and a lower Bacteroidetes:Firmicutes ratio and intestinal microbiota diversity in the jejunum than AN lambs. Notably, high abundance of Megasphaera elsdenii was revealed in AN lambs, which indicated that Megasphaera elsdenii may serve as a potential probiotic for E. coli F17 infection. Our study provides an alternative challenge model for the identification of E. coli F17-sensitive/-resistant lambs and contributes to the basic understandings of intestinal microbiota in lambs with different susceptibilities to E. coli F17.
Collapse
Affiliation(s)
- Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
14
|
Ge YW, Chu M, Zhu ZY, Ke QF, Guo YP, Zhang CQ, Jia WT. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Mater Today Bio 2022; 16:100439. [PMID: 36245833 PMCID: PMC9557728 DOI: 10.1016/j.mtbio.2022.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Yang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Corresponding author.
| | - Wei-Tao Jia
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| |
Collapse
|
15
|
Huang C, Shi C, Li Z, Wang W, Ming D, Gao Y, Liu H, Ma X, Wang F. Pyrroloquinoline quinone regulates glycolipid metabolism in the jejunum via inhibiting AMPK phosphorylation of weaned pigs. Food Funct 2022; 13:9610-9621. [PMID: 36004536 DOI: 10.1039/d2fo00281g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maintenance of intestinal metabolic function is important for optimal growth performance in post-weaning pigs. This study aimed to evaluate the effect of pyrroloquinoline quinone (PQQ) on maintaining intestinal glycolipid metabolism in weaned pigs. Seventy-two Duroc × Landrace × Yorkshire crossbred pigs were divided into two groups: pigs fed a basal diet (CTRL group) and pigs fed a basal diet supplemented with 3.0 mg kg-1 PQQ (PQQ group). On d 14, serum was harvested from six pigs per group and the pigs were slaughtered to sample jejunal tissue. Compared with the CTRL group, pigs in the PQQ group had increased average daily gain (P < 0.05), decreased feed : gain (P < 0.05) and tended to have a reduced diarrhea ratio (P = 0.057). Jejunal villus height and villus height/crypt depth ratio were increased, and the crypt depth was decreased in the PQQ group (P < 0.01). The proteomics results showed that PQQ supplementation acted on three metabolic pathways, type I diabetes mellitus, the pancreatic secretion pathway and immune-related signalling. Compared with the CTRL group, PQQ supplementation increased (P < 0.05) serum insulin and jejunal mucosal pyruvate, triglyceride, total cholesterol and low-density lipoprotein cholesterol in the pigs. Jejunal mucosal lactic dehydrogenase and high-density lipoprotein cholesterol levels in the pigs were decreased by PQQ supplementation (P < 0.05). In addition, PQQ supplementation reduced glucose transporter 5 and phosphorylated-AMP-activated protein kinase expression in the jejunal mucosa of the pigs (P < 0.05). In conclusion, dietary supplementation with PQQ improved the growth performance and jejunal morphology and regulated glycolipid metabolism via inhibiting AMPK phosphorylation in weaned pigs.
Collapse
Affiliation(s)
- Caiyun Huang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Zhe Li
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Dongxu Ming
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Youjun Gao
- Changmao Biochemical Engineering Company, Changzhou 213000, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Li X, Deng N, Zheng T, Qiao B, Peng M, Xiao N, Tan Z. Importance of Dendrobium officinale in improving the adverse effects of high-fat diet on mice associated with intestinal contents microbiota. Front Nutr 2022; 9:957334. [PMID: 35967811 PMCID: PMC9365999 DOI: 10.3389/fnut.2022.957334] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/30/2023] Open
Abstract
A growing body of evidence suggests that the disturbance of intestinal microbiota induced by high-fat diet is the main factor causing many diseases. Dendrobium officinale (DO), a medicinal and edible homologous Chinese herbal medicine, plays essential role in regulating intestinal microbiota. However, the extent of DO on the intestinal contents microbiota in mice fed with a high-fat diet still remains unclear. Therefore, this study explored the role of intestinal contents microbiota in the regulation of adverse effects caused by high-fat diet by DO from the perspective of intestinal microecology. Twenty-four mice were randomly distributed into the normal saline-treated basal diet (bcn), normal saline-treated high-fat diet (bmn), 2.37 g kg-1 days-1 DO traditional decoction-treated high-fat diet (bdn) and 1.19 g kg-1 days-1 lipid-lowering decoction-treated high-fat diet (bjn) groups for 40 days. Subsequently, we assessed the changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) levels, and the characteristics of intestinal contents microbiota. Results demonstrated that DO exerted the modulating effect on the changes in body weight, TG, TC, LDL-C, and HDL-C levels. Besides, DO decreased the richness and diversity of intestinal contents microbiota, and altered the structure as a whole. Dominant bacteria, Ruminococcus and Oscillospira, varied significantly and statistically. Moreover, DO influenced the carbohydrate, amino acid, and energy metabolic functions. Furthermore, Ruminococcus and Oscillospira presented varying degrees of inhibition/promotion of TG, TC, LDL-C, and HDL-C. Consequently, we hypothesized that Ruminococcus and Oscillospira, as dominant bacteria, played key roles in the treatment of diseases associated with a high-fat diet DO.
Collapse
Affiliation(s)
- Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Shi C, Xu S, Huang C, Wang Z, Wang W, Ming D, Yin X, Liu H, Wang F. Pyrroloquinoline Quinone Regulates Enteric Neurochemical Plasticity of Weaned Rats Challenged With Lipopolysaccharide. Front Neurosci 2022; 16:878541. [PMID: 35592257 PMCID: PMC9112857 DOI: 10.3389/fnins.2022.878541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The enteric nervous system (ENS) is important for the intestinal barrier to defend and regulate inflammation in the intestine. The aim of this study was to investigate the effect of pyrroloquinoline quinone (PQQ) on regulating neuropeptide secretion by ENS neurons of rats challenged with lipopolysaccharide (LPS) to create enteritis. Thirty Sprague Dawley rats were divided into five groups, namely, basal (CTRL), basal plus LPS challenge (LPS), basal with 2.5 mg/kg b.w./day of PQQ plus challenge with LPS (PQQ 2.5), basal with 5.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 5), and basal with 10.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 10). After treatment with basal diet or PQQ for 14 days, rats were challenged with LPS except for the CTRL group. Rats were euthanized 6 h after the LPS challenge. Rats showed an increased average daily gain in PQQ treatment groups (P < 0.05). Compared with the LPS group, PQQ 5 and PQQ 10 rats showed increased villus height and villus height/crypt depth of jejunum (P < 0.05). In PQQ treatment groups, concentrations of IL-1β and TNF-α in serum and intestine of rats were decreased, and IL-10 concentration was increased in serum compared with the LPS group (P < 0.05). Compared with the LPS group, the concentration of neuropeptide Y (NPY), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and brain-derived neurotropic factor (BDNF) in serum were decreased in PQQ treatment groups (P < 0.05). Compared with the LPS group, ileal mRNA levels of BDNF, NPY, and NGF were decreased in PQQ treatment groups (P < 0.05). Jejunal concentrations of SP, CGRP, VIP, BDNF, NPY, and NGF were decreased in PQQ treatment groups compared with the LPS group (P < 0.05). Compared with the LPS group, phosphor-protein kinase B (p-Akt)/Akt levels in jejunum and colon were decreased in PQQ treatment groups (P < 0.05). In conclusion, daily treatment with PQQ improved daily gain, jejunal morphology, immune responses. PQQ-regulated enteric neurochemical plasticity of ENS via the Akt signaling pathway of weaned rats suffering from enteritis.
Collapse
Affiliation(s)
- Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Song Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxu Ming
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xindi Yin
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
19
|
Huang C, Fan Z, Han D, Johnston LJ, Ma X, Wang F. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway. J Anim Sci Biotechnol 2021; 12:77. [PMID: 34140030 PMCID: PMC8212497 DOI: 10.1186/s40104-021-00595-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Oxidative stress is a main cause of piglet gut damage and diarrhea. Pyrroloquinoline quinone (PQQ), is a novel redox cofactor with antioxidant properties. However, the effect and mechanism that PQQ supplementation decreases oxidative injury in weaned pigs is not understood. Therefore, the aim of this study is to confirm the effect of PQQ on regulating redox status in weaned pigs and the mechanism for antioxidant function by porcine intestinal epithelial cell line (IPEC-J2) challenged with H2O2. Results Experiment 1, 144 Duroc × Landrace × Yorkshire pigs (weaned at 28 d) were allocated to four groups: received a basal diet (control) and diets supplemented with 0.15%, 0.30% and 0.45% PQQ, respectively. On d 28, growth performance, diarrhea incidence and redox factors were measured. Experiment 2, IPEC-J2 were treated with or without PQQ in the presence or absence of H2O2 for indicated time points. Experiment 3, IPEC-J2 were transfected with or without Nrf2 siRNA, then treated according to Experiment 2. The cell viability, redox factors, protein of tight junctions and Nrf2 pathway were determined. In vivo, PQQ supplementation demonstrated dose-related improvements in average daily gain, and gain to feed ratio (Linear P < 0.05). During d 0–28, compared to controls, 0.45% PQQ supplementation for pigs decreased diarrhea incidence and MDA content in liver and jejunum, and increased concentration of SOD in liver; 0.3% PQQ supplementation decreased ileal and liver MDA concentration; and 0.15% PQQ supplementation decreased ileal MDA concentration (P < 0.05). In vitro, compared to cells cultured with H2O2, pre-treatment with PQQ increased cell viability, tight junction proteins expression including ZO-1, ZO-2, Occludin and Claudin-1; and decreased ROS concentration and level of Caspase-3 (P < 0.05); as well as upregulated the ratio of Bcl-2 to Bax and protein expression of nuclear Nrf2, HO-1. Notably, Nrf2 knockdown by transfection with Nrf2 siRNA largely abrogated the positive effects of PQQ pretreatment on H2O2-induced intracellular changes. Conclusions PQQ administration attenuated oxidative stress in weaned pigs which is associated with activation of Nrf2/HO-1 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00595-x.
Collapse
Affiliation(s)
- Caiyun Huang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Zijuan Fan
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China.,Department of Internal Medicine/Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Effects of Diet Supplemented with Excess Pyrroloquinoline Quinone Disodium on Growth Performance, Blood Parameters and Redox Status in Weaned Pigs. Animals (Basel) 2021; 11:ani11020359. [PMID: 33535427 PMCID: PMC7912013 DOI: 10.3390/ani11020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Weaning is a vital process for weaned pigs since piglets are exposed to psychologic and environmental stresses. These stresses converge on the pig to cause low feed consumption and weight gain meanwhile increased risk of diarrhea and mortality during the early postweaning period. The use of antibiotic growth promoters to help prevent weaning stress in weaned pigs has been forbidden in the European Union, Korea, Japan and China. Pyrroloquinoline quinone disodium (PQQ·Na2) is increasing interest in use of alternatives to in-feed antibiotics. In this study, we found PQQ·Na2 can improve growth performance meanwhile improves antioxidant status of weaned pigs. A high oral dose of PQQ·Na2 does not appear to have harmful effects on weaned pigs. Abstract The research was implemented to assess the safety of feeding excess of pyrroloquinoline quinone disodium (PQQ·Na2) to 108 Duroc × Landrace × Large White weaned pigs (BW = 8.38 ± 0.47 kg). Pigs were weaned at 28 d and randomly distributed to one of three diets with six replicates and six pigs per replicate (three males and three females). Pigs in the control group were fed a corn-soybean meal-based diet (without growth promoter) while the two experimental diets were supplied with 7.5 and 75.0 mg/kg PQQ·Na2, respectively. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion (F:G), diarrhea incidence, hematology, serum biochemistry, organ index and general health were determined. Diets supplementation with 7.5 mg/kg PQQ·Na2 in weaned pigs could increase ADG during the entire experimental period (p < 0.05). And there was a tendency to decrease F:G (p = 0.063). The F:G of weaned pigs fed 7.5 and 75.0 mg/kg PQQ·Na2 supplemented diets was decreased by 9.83% and 8.67%, respectively, compared to the control group. Moreover, pigs had reduced diarrhea incidence (p < 0.01) when supplemented with PQQ·Na2. No differences were observed between pigs supplemented with 0.0, 7.5 and 75.0 mg/kg PQQ·Na2 diets on hematological and serum biochemical parameters as well as histological assessment of heart, liver, spleen, lung and kidney. At day 14, pigs had increased activity of glutathione peroxidase (GSH-Px) (p < 0.05), catalase (CAT) (p < 0.05) and total antioxidant capacity (T-AOC) (p < 0.05), and the serum concentration of malondialdehyde (MDA) was decreased (p < 0.01) with PQQ·Na2 supplementation. At day 28, pigs had increased activities of total superoxide dismutase (T-SOD) (p < 0.01), GSH-Px (p < 0.01), CAT (p < 0.05) and T-AOC (p < 0.01), and serum concentration of MDA was lower (p < 0.01) with PQQ·Na2 supplementation. In conclusion, PQQ·Na2 can improve weaned pigs growth performance and serum antioxidant status. Meanwhile high PQQ·Na2 inclusion of 75.0 mg/kg does not appear to result in harmful effects on growth performance of pigs.
Collapse
|
21
|
Li X, Peng X, Guo K, Tan Z. Bacterial diversity in intestinal mucosa of mice fed with Dendrobium officinale and high-fat diet. 3 Biotech 2021; 11:22. [PMID: 33442520 PMCID: PMC7779387 DOI: 10.1007/s13205-020-02558-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the effect of Dendrobium officinale (DO) on the diversity of intestinal mucosal flora in high-fat diet mice and provided an experimental basis for the development and research of DO and its series products. Twenty-four mice were randomly assigned to four equal groups of six mice, namely the control (bcm) group, model (bmm) group, Dendrobium officinale (bdm) group, and positive control (bjm) group. Mice in the bdm group were administrated at the dose of 2.37 g·kg-1·days-1, and those in bjm group were given the Lipid-lowering decoction at the concentration of 1.19 g·kg-1·days-1, and sterile water was used as a placebo control twice a day for 40 consecutive days. We measured the dynamic weight changes and intestinal mucosal flora changes in mice. The analysis showed that DO had a regulatory effect on weight change induced by a high-fat diet in mice. DO could also regulate the changes in the diversity of the intestinal mucosa of mice, which was specifically reflected in the changes of Chao 1, ACE, Shannon and Simpson index. The sample information of the bdm group was relatively concentrated, but the distance from the bmm group was relatively scattered. The relative abundance results showed dominant bacteria phylum (such as Bacteroidetes, Actinobacteria, Verrucomicrobia) and bacterial genus (such as Bifidobacterium, Ruminococcus, Ochrobactrum) in the intestinal mucosa of the four groups. And significant differences in the major microbiota between the bdm and bjm groups. In addition, DO changed the carbohydrate, energy, and amino acid metabolism of intestinal mucosal flora. To sum up, DO has a regulatory effect on weight change induced by high-fat diet in mice and can improve the diversity of intestinal mucosal flora, promote the abundance of Ochrobactrum, inhibit the abundance of Bifidobacterium and Ruminococcus, and influence the intestinal flora to positively affect high-fat diet-induced negative effects in mice.
Collapse
Affiliation(s)
- Xiaoya Li
- Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Kangxiao Guo
- Changsha Health Vocational College, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|