1
|
Gong Y, Klinkaewboonwong N, Hayashi R, Zhou Y, Nishida I, Saito R, Goshima T, Nishi T, Watanabe D, Hirata D, Akao T, Ohya Y. Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production. Biosci Biotechnol Biochem 2025; 89:910-917. [PMID: 40097305 DOI: 10.1093/bbb/zbaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Isoamyl acetate and ethyl caproate are the primary aroma compounds responsible for the fruity fragrance characteristic of Ginjo sake. Simultaneous high-level production of both compounds is crucial to achieving a balanced aroma and complex flavor. Isoamyl acetate is predominantly produced by hda1∆/hda1∆ and LEU4(G516S)/LEU4(G516S), while ethyl caproate is produced in high quantities by FAS2(G1250S)/FAS2(G1250S). In this study, to maximize the production of both aroma compounds, genome editing was employed to generate sake yeast strains combining these mutations. After small-scale fermentation tests were conducted to evaluate the production of aroma compounds, we found that the isoamyl acetate-enhancing effect of hda1∆/hda1∆ was almost completely masked by FAS2(G1250S)/FAS2(G1250S). In contrast, the effects of LEU4(G516S)/LEU4(G516S) were not entirely masked by FAS2(G1250S)/FAS2(G1250S), resulting in 2.4- and 5.4-fold greater production of isoamyl acetate and ethyl caproate, respectively. This study highlights the utility of genome editing in the combinatorial breeding of sake yeast.
Collapse
Grants
- 22H02216 Ministry of Education, Culture, Sports, Science and Technology
- 21K05377 Ministry of Education, Culture, Sports, Science and Technology
- 23K13865 Ministry of Education, Culture, Sports, Science and Technology
- Institute for Fermentation, Osaka
Collapse
Affiliation(s)
- Yifeng Gong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Norapat Klinkaewboonwong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, Hiroshima, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Hiroshima, Japan
| | | | - Rei Saito
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | - Tomoyuki Nishi
- Research Center, Asahi Sake Brewing Co., Ltd, Niigata, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, Niigata, Japan
- Faculty of Agriculture, Niigata University, Niigata, Japan
- Research Center, Asahi Sake Brewing Co., Ltd, Niigata, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Hiroshima, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Steyer JT, Todd RB. Branched-chain amino acid biosynthesis in fungi. Essays Biochem 2023; 67:865-876. [PMID: 37455545 DOI: 10.1042/ebc20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Branched-chain amino acids (BCAAs)-isoleucine, leucine, and valine-are synthesized by fungi. These amino acids are important components of proteins and secondary metabolites. The biochemical pathway for BCAA biosynthesis is well-characterized in the yeast Saccharomyces cerevisiae. The biosynthesis of these three amino acids is interconnected. Different precursors are metabolized in multiple steps through shared enzymes to produce isoleucine and valine, and the valine biosynthesis pathway branches before the penultimate step to a series of leucine biosynthesis-specific steps to produce leucine. Recent efforts have made advances toward characterization of the BCAA biosynthesis pathway in several fungi, revealing diversity in gene duplication and functional divergence in the genes for these enzymatic steps in different fungi. The BCAA biosynthesis pathway is regulated by the transcription factor LEU3 in S. cerevisiae, and LeuB in Aspergillus nidulans and Aspergillus fumigatus, and the activity of these transcription factors is modulated by the leucine biosynthesis pathway intermediate α-isopropylmalate. Herein, we discuss recent advances in our understanding of the BCAA pathway and its regulation, focusing on filamentous ascomycete fungi and comparison with the well-established process in yeast.
Collapse
Affiliation(s)
- Joel T Steyer
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| |
Collapse
|
3
|
Vigueras-Meneses LG, Escalera-Fanjul X, El-Hafidi M, Montalvo-Arredondo J, Gomez-Hernandez N, Colón M, Granados E, Campero-Basaldua C, Riego-Ruiz L, Scazzocchio C, González A, Quezada H. Two alpha isopropylmalate synthase isozymes with similar kinetic properties are extant in the yeast Lachancea kluyveri. FEMS Yeast Res 2022; 22:6546212. [PMID: 35266531 DOI: 10.1093/femsyr/foac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The first committed step in the leucine biosynthetic pathway is catalyzed by α-isopropylmalate synthase (α-IPMS, EC 2.3.3.13), which in the Saccaromycotina subphylum of Ascomycete yeasts is frequently encoded by duplicated genes. Following a gene duplication event, the two copies may be preserved presumably because the encoded proteins diverge in either functional properties and/or cellular localization. The genome of the petite-negative budding yeast Lachancea kluyveri includes two SAKL0E10472 (LkLEU4) and SAKL0F05170g (LKLEU4BIS) paralogous genes, which are homologous to other yeast α-IPMS sequences. Here, we investigate whether these paralogous genes encode functional α-IPMS isozymes and whether their functions have diverged. Molecular phylogeny suggested that the LkLeu4 isozyme is located in the mitochondria and LkLeu4BIS in the cytosol. Comparison of growth rates, leucine intracellular pools and mRNA levels, indicate that the LkLeu4 isozyme is the predominant α-IPMS enzyme during growth on glucose as carbon source. Determination of the kinetic parameters indicates that the isozymes have similar affinities for the substrates and for the feedback inhibitor leucine. Thus, the diversification of the physiological roles of the genes LkLEU4 and LKLEU4BIS involves preferential transcription of the LkLEU4 gene during growth on glucose and different subcellular localization, although ligand interactions have not diverged.
Collapse
Affiliation(s)
- Liliana Guadalupe Vigueras-Meneses
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena Escalera-Fanjul
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Javier Montalvo-Arredondo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Nicolás Gomez-Hernandez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Maritrini Colón
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Estefany Granados
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Campero-Basaldua
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, United Kingdom.,Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
4
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|