1
|
Wang H, Yang Q, Li D, Wu J, Yang S, Deng Y, Luo C, Jia W, Zhong Y, Peng P. Stable Isotopic and Metagenomic Analyses Reveal Microbial-Mediated Effects of Microplastics on Sulfur Cycling in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1167-1176. [PMID: 36599128 DOI: 10.1021/acs.est.2c06546] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.
Collapse
Affiliation(s)
- Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan523808, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou510045, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| |
Collapse
|
2
|
Smith DA, Nakamoto BJ, Suess MK, Fogel ML. Central Metabolism and Growth Rate Impacts on Hydrogen and Carbon Isotope Fractionation During Amino Acid Synthesis in E. coli. Front Microbiol 2022; 13:840167. [PMID: 35910622 PMCID: PMC9335129 DOI: 10.3389/fmicb.2022.840167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Compound specific stable isotope analysis (CSIA) of amino acids from bacterial biomass is a newly emerging powerful tool for exploring central carbon metabolism pathways and fluxes. By comparing isotopic values and fractionations relative to water and growth substrate, the impact of variable flow path for metabolites through different central metabolic pathways, perturbations of these paths, and their resultant consequences on intracellular pools and resultant biomass may be elucidated. Here, we explore the effects that central carbon metabolism and growth rate can have on stable hydrogen (δ2H) and carbon (δ13C) compound specific isotopic values of amino acids, and whether diagnostic isotopic fingerprints are revealed by these paired analyses. We measured δ2H and δ13C in amino acids in the wild type Escherichia coli (MG1655) across a range of growth rates in chemostat cultures to address the unknown isotopic consequences as metabolic fluxes are shuffled between catabolic and anabolic metabolisms. Additionally, two E. coli knockout mutants, one with deficiency in glycolysis -pgi (LC1888) and another inhibiting the oxidative pentose phosphate pathway (OPPP) -zwf (LC1889), were grown on glucose and used as a comparison against the wild type E. coli (MG1655) to address the isotopic changes of amino acids produced in these perturbed metabolic pathways. Amino acid δ2H values, which collectively vary in composition by more than 400‰, are altered along with δ13C values demonstrating fundamental shifts in central metabolic pathways and/or fluxes. Within our linear discriminant analysis with a simple model organism to examine potential amino acid fingerprinting, our knockout strains and variable growth rate samples plot across a wider array of organism classification than merely within the boundaries of other bacterial data.
Collapse
Affiliation(s)
- Derek A. Smith
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Bobby James Nakamoto
- Department of Biology, University of New Brunswick Fredericton, Fredericton, NB, Canada
- Department of Earth and Planetary Sciences, EDGE Institute, University of California, Riverside, Riverside, CA, United States
| | - Melanie K. Suess
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Marilyn L. Fogel
- Department of Earth and Planetary Sciences, EDGE Institute, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|