1
|
Irianni-Renno M, Rico JL, Key TA, De Long SK. Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135059. [PMID: 39053064 DOI: 10.1016/j.jhazmat.2024.135059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone.
Collapse
Affiliation(s)
- Maria Irianni-Renno
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jorge L Rico
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, 22777 Springwoods Village Pkwy, Spring, TX 77389, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Bellini R, Vasile NS, Bassani I, Vizzarro A, Coti C, Barbieri D, Scapolo M, Pirri CF, Verga F, Menin B. Investigating the activity of indigenous microbial communities from Italian depleted gas reservoirs and their possible impact on underground hydrogen storage. Front Microbiol 2024; 15:1392410. [PMID: 38725680 PMCID: PMC11079786 DOI: 10.3389/fmicb.2024.1392410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
H2 produced from renewable energies will play a central role in both greenhouse gas reduction and decarbonization by 2050. Nonetheless, to improve H2 diffusion and utilization as a fuel, large storage capacity systems are needed. Underground storage of natural gas in depleted reservoirs, aquifers and salt caverns is a well-established technology. However, new challenges arise when it comes to storing hydrogen due to the occurrence and activity of indigenous microbial populations in deep geological formations. In a previous study, four Italian natural gas reservoirs were characterized both from a hydro-chemical and microbiological point of view, and predictive functional analyses were carried out with the perspective of underground hydrogen storage (UHS). In the present work, formation waters from the same reservoirs were used as inoculant during batch cultivation tests to characterize microbial activity and its effects on different gas mixtures. Results evidence a predominant acidogenic/acetogenic activity, whilst methanogenic and sulfate reducing activity were only marginal for all tested inoculants. Furthermore, the microbial activation of tested samples is strongly influenced by nutrient availability. Obtained results were fitted and screened in a computational model which would allow deep insights in the study of microbial activity in the context of UHS.
Collapse
Affiliation(s)
- Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Nicolò Santi Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | | | | | | | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| |
Collapse
|
3
|
Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, Ndour PMS, Schmitt-Kopplin P, Cournac L, Laplaze L, Heulin T, Achouak W. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. MICROBIOME 2024; 12:1. [PMID: 38167150 PMCID: PMC10763007 DOI: 10.1186/s40168-023-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.
Collapse
Affiliation(s)
- Abdelrahman Alahmad
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
- UniLaSalle, SFR NORVEGE FED 4277, AGHYLE Rouen UP 2018.C101, 3 Rue du Tronquet, 76130, Mont-Saint- Aignan, France
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Chair Analytl Food Chem, Technical University of Munich, 85354, Freising, Weihenstephan, Germany
| | - Sylvain Fochesato
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Joris Tulumello
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Mohamed Barakat
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Papa Mamadou Sitor Ndour
- CIRAD, INRAE, Eco&Sols, Université de Montpellier, Institut Agro, IRD FR, Montpellier, France
- UCEIV-ULCO, 50 Rue Ferdinand Buisson, 62228, Calais, France
- LMI IESOL, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Chair Analytl Food Chem, Technical University of Munich, 85354, Freising, Weihenstephan, Germany
| | - Laurent Cournac
- CIRAD, INRAE, Eco&Sols, Université de Montpellier, Institut Agro, IRD FR, Montpellier, France
- LMI IESOL, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LMI LAPSE, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Thierry Heulin
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France.
| | - Wafa Achouak
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
4
|
Bigott Y, Gallego S, Montemurro N, Breuil MC, Pérez S, Michas A, Martin-Laurent F, Schröder P. Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154674. [PMID: 35318055 DOI: 10.1016/j.scitotenv.2022.154674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The reuse of water for agricultural practices becomes progressively more important due to increasing demands for a transition to a circular economy. Treated wastewater can be an alternative option of blue water used for the irrigation of crops but its risks need to be evaluated. This study assesses the uptake and metabolization of pharmaceuticals and personal care products (PPCPs) derived from treated wastewater into lettuce as well as the impact on root-associated bacteria under a realistic and worst-case scenario. Lettuce was grown in a controlled greenhouse and irrigated with water or treated wastewater spiked with and without a mixture of fourteen different PPCPs at 10 μg/L or 100 μg/L. After harvesting the plants, the same soil was reused for a consecutive cultivation campaign to test for the accumulation of PPCPs. Twelve out of fourteen spiked PPCPs were detected in lettuce roots, and thirteen in leaves. In roots, highest concentrations were measured for sucralose, sulfamethoxazole and citalopram, while sucralose, acesulfame and carbamazepine were the highest in leaves. Higher PPCP concentrations were found in lettuce roots irrigated with spiked treated wastewater than in those irrigated with spiked water. The absolute bacterial abundance remained stable over both cultivation campaigns and was not affected by any of the treatments (type of irrigation water (water vs. wastewater) nor concentration of PPCPs). However, the irrigation of lettuce with treated wastewater had a significant effect on the microbial α-diversity indices at the end of the second cultivation campaign, and modified the structure and community composition of root-associated bacteria at the end of both campaigns. Five and fourteen bacterial families were shown to be responsible for the observed changes at the end of the first and second cultivation campaign, respectively. Relative abundance of Haliangium and the clade Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was significantly affected in response to PCPPs exposure. Caulobacter, Cellvibrio, Hydrogenophaga and Rhizobacter were significantly affected in microcosms irrigated with wastewater.
Collapse
Affiliation(s)
- Yvonne Bigott
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Nicola Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Marie-Christine Breuil
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Antonios Michas
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
5
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|