1
|
Noman M, Ahmed T, Islam MS, Wang J, Cai Y, Liang S, Hao Z, Ali HM, Qiu H, Zhang Z, Chai R, Wang Y, Li B, Wang J. Bacterial extracellular biomolecules-derived multimodal manganese nanoparticles control watermelon Fusarium wilt by dysregulating fusaric acid biosynthesis pathway and precise tuning of rhizosphere metabolome. J Nanobiotechnology 2025; 23:452. [PMID: 40533729 PMCID: PMC12175322 DOI: 10.1186/s12951-025-03492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/26/2025] [Indexed: 06/22/2025] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a significant threat to watermelon production globally. Traditional control methods often rely on chemical fungicides, which pose environmental risks and limited long-term efficacy. This study introduces biogenically-synthesized manganese nanoparticles (MnNPs) as a potent antifungal agent for managing Fusarium wilt. MnNPs were synthesized extracellularly using the culture supernatant of Lysinibacillus sphaericus NOTE11, a Mn-resistant bacterial strain isolated and characterized in this study. Comprehensive physicochemical analyses confirmed their crystalline structure, spherical morphology, and elemental composition. MnNPs demonstrated potent antifungal activity, significantly inhibiting Fon growth, conidiation, and conidial germination in vitro, with 100 µg/mL MnNPs reducing hyphal growth by 21.97% and conidial germination by 80% compared to untreated controls. Disease assays further confirmed that MnNPs significantly reduced Fusarium wilt severity in watermelon (~ 84%) compared with Fon-infected controls, with MnNP-treated infected-plants exhibiting minimal symptoms and reduced invasive fungal biomass in within watermelon tissues. Transcriptomic analysis revealed that MnNPs downregulated genes in the fusaric acid biosynthesis pathway, a key determinant of Fon virulence, disrupting its ability to infect host plants. Additionally, MnNPs modulated rhizosphere metabolites, enriching defense-related compounds, including phenolics, flavonoids, and organic acids. These findings establish MnNPs as a robust and impactful strategy for managing Fusarium wilt. By integrating nanotechnology and plant-rhizopshere interactions, this study provides a novel approach to mitigating soilborne diseases, emphasizing the potential of nano-enabled disease management approaches to enhance crop protection and sustainability in agriculture.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Department of Plant Biotechnology, Korea Universtiy, Seoul, 02481, South Korea
| | - Mohammad Shafiqul Islam
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingying Cai
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhongna Hao
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Haiping Qiu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongyao Chai
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaoyu Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Li T, Shi X, Wang J, Zhou Y, Wang T, Xu Y, Xu Z, Raza W, Liu D, Shen Q. Turning antagonists into allies: Bacterial-fungal interactions enhance the efficacy of controlling Fusarium wilt disease. SCIENCE ADVANCES 2025; 11:eads5089. [PMID: 39937904 PMCID: PMC11817942 DOI: 10.1126/sciadv.ads5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Intense microbial competition in soil has driven the evolution of resistance mechanisms, yet the implications of such evolution on plant health remain unclear. Our study explored the conversion from antagonism to coexistence between Bacillus velezensis (Bv) and Trichoderma guizhouense (Tg) and its effects on Fusarium wilt disease (FWD) control. We found a bacilysin transmembrane transporter (TgMFS4) in Tg, critical during cross-kingdom dialogue with Bv. Deleting Tgmfs4 (ΔTgmfs4) mitigated Bv-Tg antagonism, reduced bacilysin import into Tg, and elevated its level in the coculture environment. This increase acted as a feedback regulator, limiting overproduction and enhancing Bv biomass. ΔTgmfs4 coinoculation with Bv demonstrated enhanced FWD control relative to wild-type Tg (Tg-WT). In addition, the Tg-WT+ Bv consortium up-regulated antimycotic secretion pathways, whereas the ΔTgmfs4+ Bv consortium enriched the CAZyme (carbohydrate-active enzyme) family gene expression in the rhizosphere, potentiating plant immune responses. This study elucidates the intricacies of bacterial-fungal interactions and their ramifications for plant health.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoteng Shi
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jiaguo Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tuokai Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yan Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Waseem Raza
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
3
|
Song L, Wang Y, Qiu F, Li X, Li J, Liang W. FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection. THE NEW PHYTOLOGIST 2025; 245:1688-1704. [PMID: 39648535 DOI: 10.1111/nph.20337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive. Here, using molecular and cellular approaches, we show that the histone H4K8 acetyltransferase FolSas2 is a transcriptional regulator of early effector gene expression in Fol. Autoacetylation of FolSas2 on K269 represses K335 ubiquitination, preventing its degradation by the 26S proteasome. During the early infection process, Fol elevates FolSas2 acetylation by differentially changing transcription of itself and the FolSir1 deacetylase, leading to specific accumulation of the enzyme at this stage. FolSas2 subsequently activates the expression of an array of effectors genes, and as a consequence, Fol invades tomato successfully. These findings reveal a regulatory mechanism of effector gene expression via autoacetylation of a histone modifier during plant fungal invasion.
Collapse
Affiliation(s)
- Limin Song
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yalei Wang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fahui Qiu
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxia Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingtao Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
4
|
Qian H, Xiao Z, Cheng L, Geng R, Ma Y, Bi Y, Liang W, Yang A. A Novel Secreted Protein of Fusarium oxysporum Promotes Infection by Inhibiting PR-5 Protein in Plant. PLANT, CELL & ENVIRONMENT 2025; 48:1021-1036. [PMID: 39400398 DOI: 10.1111/pce.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fusarium oxysporum, an important soilborne fungal pathogen that causes serious Fusarium wilt disease, secretes diverse effectors during the infection. In this study, we identified a novel secreted cysteine-rich protein, FolSCP1, which contains unknown protein functional domain. Here, we characterized FolSCP1 as a secreted virulence factor that promotes the pathogen infection of host plants by inhibiting diverse plant defence responses. FolSCP1 interacted with the pathogenesis-related 5 (PR-5) protein SlPR5, a positive regulator of tomato plant immunity against multiple tomato pathogens, and effectively attenuated the antifungal activity of the tomato PR-5 protein. FoSCP1, a homologue of FolSCP1, was secreted by a F. oxysporum isolate from infected tobacco and targeted the tobacco PR-5 protein NtPR5 to suppress plant defence for further infection. In summary, our study revealed a fungal virulence strategy in which F. oxysporum secrete effectors that interfere with plant immunity by binding to the PR-5 protein of the host plant and inhibiting its biological activity, thereby promoting fungal infection.
Collapse
Affiliation(s)
- Hengwei Qian
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiliang Xiao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yan Ma
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanxiao Bi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
5
|
Wu J, Wang P, Wang W, Hu H, Wei Q, Bao C, Yan Y. Comprehensive Genomic and Proteomic Analysis Identifies Effectors of Fusarium oxysporum f. sp. melongenae. J Fungi (Basel) 2024; 10:828. [PMID: 39728324 DOI: 10.3390/jof10120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024] Open
Abstract
Fusarium wilt in eggplant caused by F. oxysporum f. sp. melongenae is a major devastating soil-borne disease on a worldwide scale. Effectors play important roles in the interactions in pathogen-plant interactions. Identifying effectors is essential for elucidating the pathogenic mechanisms of phytopathogenic fungi. In this study, bioinformatic prediction approaches, including SignalP v5.0, TMHMM v2.0, WoLF PSORT, PredGPI, and EffectorP, were employed to screen for candidate secreted effector proteins (CSEPs) in F. oxysporum f. sp. melongenae. A total of 1019 proteins exhibiting characteristics typical of classical secretory proteins were identified, 301 of which demonstrated carbohydrate activity, and 194 CSEPs were identified. Furthermore, a total of 563 proteins from F. oxysporum f. sp. melongenae under induced conditions were identified using mass spectrometry-based label-free quantitative proteomics. These findings suggest a potential role of these CSEPs in the interaction between F. oxysporum f. sp. melongenae and eggplant, thereby contributing to a deeper understanding of the pathogenic mechanisms of F. oxysporum f. sp. melongenae and strategies for disease management.
Collapse
Affiliation(s)
- Jiayelu Wu
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Pengfei Wang
- Zhejiang Normal University, Jinhua 321004, China
| | - Wuhong Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Haijiao Hu
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Qingzhen Wei
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Yaqin Yan
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
6
|
Li J, Yang L, Ding S, Gao M, Yan Y, Yu G, Zheng Y, Liang W. Plant PR1 rescues condensation of the plastid iron-sulfur protein by a fungal effector. NATURE PLANTS 2024; 10:1775-1789. [PMID: 39367256 DOI: 10.1038/s41477-024-01811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Plant pathogens secrete numerous effectors to promote host infection, but whether any of these toxic proteins undergoes phase separation to manipulate plant defence and how the host copes with this event remain elusive. Here we show that the effector FolSvp2, which is secreted from the fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), translocates a tomato iron-sulfur protein (SlISP) from plastids into effector condensates in planta via phase separation. Relocation of SlISP attenuates plant reactive oxygen species production and thus facilitates Fol invasion. The action of FolSvp2 also requires K205 acetylation that prevents ubiquitination-dependent degradation of this protein in both Fol and plant cells. However, tomato has evolved a defence protein, SlPR1. Apoplastic SlPR1 physically interacts with and inhibits FolSvp2 entry into host cells and, consequently, abolishes its deleterious effect. These findings reveal a previously unknown function of PR1 in countering a new mode of effector action.
Collapse
Affiliation(s)
- Jingtao Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shuzhi Ding
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yu Yan
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Gang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaning Zheng
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
7
|
Jackson E, Li J, Weerasinghe T, Li X. The Ubiquitous Wilt-Inducing Pathogen Fusarium oxysporum-A Review of Genes Studied with Mutant Analysis. Pathogens 2024; 13:823. [PMID: 39452695 PMCID: PMC11510031 DOI: 10.3390/pathogens13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium oxysporum is one of the most economically important plant fungal pathogens, causing devastating Fusarium wilt diseases on a diverse range of hosts, including many key crop plants. Consequently, F. oxysporum has been the subject of extensive research to help develop and improve crop protection strategies. The sequencing of the F. oxysporum genome 14 years ago has greatly accelerated the discovery and characterization of key genes contributing to F. oxysporum biology and virulence. In this review, we summarize important findings on the molecular mechanisms of F. oxysporum growth, reproduction, and virulence. In particular, we focus on genes studied through mutant analysis, covering genes involved in diverse processes such as metabolism, stress tolerance, sporulation, and pathogenicity, as well as the signaling pathways that regulate them. In doing so, we hope to present a comprehensive review of the molecular understanding of F. oxysporum that will aid the future study of this and related species.
Collapse
Affiliation(s)
- Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Amatto IVDS, Simões FADO, Garzon NGDR, Marciano CL, Silva RRD, Cabral H. Response of Fusarium oxysporum soil isolate to amphotericin B and fluconazole at the proteomic level. Braz J Microbiol 2024; 55:2557-2568. [PMID: 38954219 PMCID: PMC11405588 DOI: 10.1007/s42770-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Fusarium oxysporum is a cross-kingdom pathogen that infects humans, animals, and plants. The primary concern regarding this genus revolves around its resistance profile to multiple classes of antifungals, particularly azoles. However, the resistance mechanism employed by Fusarium spp. is not fully understood, thus necessitating further studies to enhance our understanding and to guide future research towards identifying new drug targets. Here, we employed an untargeted proteomic approach to assess the differentially expressed proteins in a soil isolate of Fusarium oxysporum URM7401 cultivated in the presence of amphotericin B and fluconazole. In response to antifungals, URM7401 activated diverse interconnected pathways, such as proteins involved in oxidative stress response, proteolysis, and lipid metabolism. Efflux proteins, antioxidative enzymes and M35 metallopeptidase were highly expressed under amphotericin B exposure. Antioxidant proteins acting on toxic lipids, along with proteins involved in lipid metabolism, were expressed during fluconazole exposure. In summary, this work describes the protein profile of a resistant Fusarium oxysporum soil isolate exposed to medical antifungals, paving the way for further targeted research and discovering new drug targets.
Collapse
Affiliation(s)
- I V da S Amatto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - F A de O Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - N G da R Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - C L Marciano
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - R R da Silva
- Department of Molecular Biosciences, School of Pharmaceutical Sciences, University of São, Ribeirão Preto, Brazil
| | - H Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
9
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Zhou Y, Lu X, Hao J, Li S. Quantitative Acetylome Analysis of Differentially Modified Proteins in Virulence-Differentiated Fusarium oxysporum f. sp. cucumerinum Isolates during Cucumber Colonization. J Fungi (Basel) 2023; 9:920. [PMID: 37755028 PMCID: PMC10532600 DOI: 10.3390/jof9090920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium oxysporum f. sp. cucumerinum (Foc) is a prominent pathogen that adversely affects cucumber (Cucumis sativus) production. In the pathogen's parasitic lifestyle, the pathogenesis and virulence evolution may be regulated by lysine acetylation, as demonstrated in many living organisms. However, its specific function in Foc remains poorly understood. In this study, the acetylome profiles of a mild virulence strain (foc-3b) and its derived virulence-enhanced strain (Ra-4) were analyzed before and post-inoculation on cucumber plants. In total, 10,664 acetylation sites were identified corresponding to 3874 proteins, and 45 conserved acetylation motifs were detected. Through comparison of the acetylomes, numerous differentially lysine-acetylated proteins were enriched in energy metabolism and protein processing processes, indicating the critical role of lysine acetylation during the transition from the saprotrophic lifestyle to the parasitic lifestyle. Comparative acetylome analyses on the two virulence-differentiated strains revealed that several differentially lysine-acetylated proteins were involved in pathways of defense response and energy metabolism. Ra-4 showed enhanced energy metabolism compared to foc-3b. This indicates that robust metabolic activity is required to achieve high virulence and facilitating adaptive evolution. Additionally, faster host responses are supported by an ample energy supply enhancing virulence. Thus, lysine acetylation plays a crucial role in the pathogenesis and virulence evolution of Foc.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohong Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Shidong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Zhang N, Lv F, Qiu F, Han D, Xu Y, Liang W. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation. EMBO J 2023; 42:e112634. [PMID: 36891678 PMCID: PMC10152141 DOI: 10.15252/embj.2022112634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
In response to infection, plants can induce the production of reactive oxygen species (ROS) to restrict pathogen invasion. In turn, adapted pathogens have evolved a counteracting mechanism of enzymatic ROS detoxification, but how it is activated remains elusive. Here, we show that in the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol) this process is initiated by deacetylation of the FolSrpk1 kinase. Upon ROS exposure, Fol decreases FolSrpk1 acetylation on the K304 residue by altering the expression of the acetylation-controlling enzymes. Deacetylated FolSrpk1 disassociates from the cytoplasmic FolAha1 protein, thus enabling its nuclear translocation. Increased accumulation of FolSrpk1 in the nucleus allows for hyperphosphorylation of its phosphorylation target FolSr1 that subsequently enhances transcription of different types of antioxidant enzymes. Secretion of these enzymes removes plant-produced H2 O2 , and enables successful Fol invasion. Deacetylation of FolSrpk1 homologs has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism for initiation of ROS detoxification upon plant fungal infection.
Collapse
Affiliation(s)
- Ning Zhang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Fangjiao Lv
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Fahui Qiu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Dehai Han
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yang Xu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Wang C, Zheng Y, Liu Z, Qian Y, Li Y, Yang L, Liu S, Liang W, Li J. The secreted FolAsp aspartic protease facilitates the virulence of Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2023; 14:1103418. [PMID: 36760509 PMCID: PMC9905682 DOI: 10.3389/fmicb.2023.1103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Pathogens utilize secretory effectors to manipulate plant defense. Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomatoes. We previously identified 32 secreted effector candidates by LC-MS analysis. In this study, we functionally identified one of the secreted proteins, FolAsp, which belongs to the aspartic proteases (Asp) family. The FolAsp was upregulated with host root specifically induction. Its N-terminal 1-19 amino acids performed the secretion activity in the yeast system, which supported its secretion in Fol. Phenotypically, the growth and conidia production of the FolAsp deletion mutants were not changed; however, the mutants displayed significantly reduced virulence to the host tomato. Further study revealed the FolAsp was localized at the apoplast and inhibited INF1-induced cell death in planta. Meanwhile, FolAsp could inhibit flg22-mediated ROS burst. Furthermore, FolAsp displayed protease activity on host protein, and overexpression of FolAsp in Fol enhanced pathogen virulence. These results considerably extend our understanding of pathogens utilizing secreted protease to inhibit plant defense and promote its virulence, which provides potential applications for tomato improvement against disease as the new drug target.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yaning Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Zhishan Liu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yongpan Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yue Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Sihui Liu
- College of Science and Information, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,*Correspondence: Wenxing Liang,
| | - Jingtao Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,Jingtao Li,
| |
Collapse
|
13
|
Qian H, Song L, Wang L, Wang B, Liang W. The secreted FoAPY1 peptidase promotes Fusarium oxysporum invasion. Front Microbiol 2022; 13:1040302. [PMID: 36338032 PMCID: PMC9626516 DOI: 10.3389/fmicb.2022.1040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The secretion of peptidases from several pathogens has been reported, but the biological function of these proteins in plant-pathogen interactions is poorly understood. Fusarium oxysporum, a soil-borne plant pathogenic fungus that causes Fusarium wilt in its host, can secrete proteins into host plant cells during the infection process to interfere with the host plant defense response and promote disease occurrence. In this study, we identified a peptidase, FoAPY1, that could be secreted from F. oxysporum depending on the N-terminal signal peptide of the protein. FoAPY1 belongs to the peptidase M28 family and exerts peptidase activity in vitro. Furthermore, the FoAYP1 gene knockout strain (∆FoAYP1) presented reduced virulence to tomato plants, but its mycelial growth and conidiation were unchanged. Moreover, FoAYP1 overexpression tomato seedlings exhibited enhanced susceptibility to F. oxysporum and Botrytis cinerea strains. These data demonstrated that FoAYP1 contributes to the virulence of F. oxysporum may through peptidase activity against host plant proteins.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lulu Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baoshan Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
14
|
Qian H, Wang L, Wang B, Liang W. The secreted ribonuclease T2 protein FoRnt2 contributes to Fusarium oxysporum virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:1346-1360. [PMID: 35696123 PMCID: PMC9366063 DOI: 10.1111/mpp.13237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 05/03/2023]
Abstract
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Lulu Wang
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and Medicine, Qingdao Agricultural UniversityQingdaoChina
| | - Baoshan Wang
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and Medicine, Qingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
15
|
Xu M, Tian X, Ku T, Wang G, Zhang E. Global Identification and Systematic Analysis of Lysine Malonylation in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2021; 12:728338. [PMID: 34490025 PMCID: PMC8417889 DOI: 10.3389/fpls.2021.728338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
Collapse
Affiliation(s)
- Min Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingting Ku
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|