1
|
An W, Gao Y, Liu L, Bai Q, Zhao J, Zhao Y, Zhang XC. Structural basis of urea transport by Arabidopsis thaliana DUR3. Nat Commun 2025; 16:1782. [PMID: 39972035 PMCID: PMC11840088 DOI: 10.1038/s41467-025-56943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Urea is a primary nitrogen source used as fertilizer in agricultural plant production and a crucial nitrogen metabolite in plants, playing an essential role in modern agriculture. In plants, DUR3 is a proton-driven high-affinity urea transporter located on the plasma membrane. It not only absorbs external low-concentration urea as a nutrient but also facilitates nitrogen transfer by recovering urea from senescent leaves. Despite its importance, the high-affinity urea transport mechanism in plants remains insufficiently understood. In this study, we determine the structures of Arabidopsis thaliana DUR3 in two different conformations: the inward-facing open state of the apo structure and the occluded urea-bound state, with overall resolutions of 2.8 Å and 3.0 Å, respectively. By comparing these structures and analyzing their functional characteristics, we elucidated how urea molecules are specifically recognized. In the urea-bound structure, we identified key titratable amino acid residues and proposed a model for proton involvement in urea transport based on structural and functional data. This study enhances our understanding of proton-driven urea transport mechanisms in DUR3.
Collapse
Affiliation(s)
- Weidong An
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, Key Laboratory of Plant and Soil Interactions of MEoC, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qinru Bai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Deletion of cox7c Results in Pan-Azole Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2022; 66:e0015122. [PMID: 35647650 PMCID: PMC9211413 DOI: 10.1128/aac.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Aspergillus fumigatus, the most prevalent resistance to azoles results from mutational modifications of the azole target protein Cyp51A, but there are non-cyp51A mutants resistant to azoles, and the mechanisms underlying the resistance of these strains remain to be explored. Here, we identified a novel cytochrome c oxidase, cox7c (W56*), nonsense mutation in the laboratory and found that it caused reduced colony growth and resistance to multiantifungal agents. Meanwhile, we revealed that cold storage is responsible for increased tolerance of conidia to itraconazole (ITC) stress, which further advances azole-resistant mutations (cryopreservation→ITC tolerance→azole resistance). The deletion or mutation of cox7c results explicitly in resistance to antifungal-targeting enzymes, including triazoles, polyenes, and allylamines, required for ergosterol synthesis, or resistance to fungal ergosterol. A high-performance liquid chromatography (HPLC) assay showed that the cox7c knockout strain decreased intracellular itraconazole concentration. In addition, the lack of Cox7c resulted in the accumulation of intracellular heme B. We validated that an endogenous increase in, or the exogenous addition of, heme B was capable of eliciting azole resistance, which was in good accordance with the phenotypic resistance analysis of cox7c mutants. Furthermore, RNA sequencing verified the elevated transcriptional expression levels of multidrug transport genes. Additionally, lower itraconazole-induced reactive oxygen species generation in mycelia of a cox7c-deletion strain suggested that this reduction may, in part, contribute to drug resistance. These findings increase our understanding of how A. fumigatus’s direct responses to azoles promote fungal survival in the environment and address genetic mutations that arise from patients or environments.
Collapse
|
3
|
Long N, Zhong G. The C-22 sterol desaturase Erg5 is responsible for ergosterol biosynthesis and conidiation in Aspergillus fumigatus. J Microbiol 2022; 60:620-626. [DOI: 10.1007/s12275-022-1564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
|
4
|
Functions of polyamines in growth and development of Phycomyces blakesleeanus wild-type and mutant strains. Fungal Biol 2022; 126:429-437. [DOI: 10.1016/j.funbio.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
|
5
|
Wang Y, Wang S, Zeng L, Han Z, Cao J, Wang Y, Zhong G. Long-chain unsaturated fatty acids are involved in the viability and itraconazole susceptibility of Aspergillus fumigatus. Biochem Biophys Res Commun 2021; 585:82-88. [PMID: 34800884 DOI: 10.1016/j.bbrc.2021.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The prevalence of invasive aspergillosis with azole resistance is increasing, but the mechanisms underlying the development of resistance and treatment strategies are still limited. The present work is focused on finding a relationship between long-chain unsaturated fatty acids (LCUFAs), Aspergillus fumigatus development, and antifungal resistance. The effects of LCUFAs on antifungal agents in vitro were determined, and the stearic acid desaturase gene (sdeA) of A. fumigatus was characterized. In in vitro antifungal tests, LCUFAs antagonized the antifungal activity of itraconazole by extracting it from media, thereby preventing it from entering cells. The OA auxotrophic phenotype caused by an sdeA deletion confirmed that SdeA was required for OA biosynthesis in A. fumigatus. Furthermore, several low-level sdeA-overexpressing mutants with impaired vegetative growth phenotypes were successfully constructed. Additionally, an sdeA-overexpressing mutant, OEsdeA-5, showed lowered sensitivity levels to itraconazole. Moreover, RNA sequencing of OEsdeA-5 revealed that the altered gene-expression pattern. Through targeted metabolomics, decreased palmitic acid and stearic acid contents, accompanied by higher palmitoleic acid, margaroleic acid, and OA production levels, were found in OEsdeA-5. This study provides a novel insight of understanding of azole resistance and a potential target for drug development.
Collapse
Affiliation(s)
- Yuanzhou Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, China
| | - Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Ziyu Han
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiayi Cao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|