1
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
2
|
Severinsen MM, Westphal KR, Terp M, Sørensen T, Olsen A, Bachleitner S, Studt-Reinhold L, Wimmer R, Sondergaard TE, Sørensen JL. Filling out the gaps - identification of fugralins as products of the PKS2 cluster in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1264366. [PMID: 38025899 PMCID: PMC10667903 DOI: 10.3389/ffunb.2023.1264366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Mikael Terp
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Studt-Reinhold
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
3
|
Tan JY, Zhang Z, Izzah HJ, Fong YK, Lee D, Mutwil M, Hong Y. Volatile-Based Diagnosis for Pathogenic Wood-Rot Fungus Fulvifomes siamensis by Electronic Nose (E-Nose) and Solid-Phase Microextraction/Gas Chromatography/Mass Spectrometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094538. [PMID: 37177742 PMCID: PMC10181603 DOI: 10.3390/s23094538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Wood rot fungus Fulvifomes siamensis infects multiple urban tree species commonly planted in Singapore. A commercial e-nose (Cyranose 320) was used to differentiate some plant and fungi volatiles. The e-nose distinctly clustered the volatiles at 0.25 ppm, and this sensitivity was further increased to 0.05 ppm with the use of nitrogen gas to purge the system and set up the baseline. Nitrogen gas baseline resulted in a higher magnitude of sensor responses and a higher number of responsive sensors. The specificity of the e-nose for F. siamensis was demonstrated by distinctive clustering of its pure culture, fruiting bodies collected from different tree species, and in diseased tissues infected by F. siamensis with a 15-min incubation time. This good specificity was supported by the unique volatile profiles revealed by SPME GC-MS analysis, which also identified the signature volatile for F. siamensis-1,2,4,5-tetrachloro-3,6-dimethoxybenzene. In field conditions, the e-nose successfully identified F. siamensis fruiting bodies on different tree species. The findings of concentration-based clustering and host-tree-specific volatile profiles for fruiting bodies provide further insights into the complexity of volatile-based diagnosis that should be taken into consideration for future studies.
Collapse
Affiliation(s)
- Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ziteng Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hazirah Junin Izzah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yok King Fong
- National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Daryl Lee
- National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yan Hong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
4
|
Zaman R, May C, Ullah A, Erbilgin N. Bark Beetles Utilize Ophiostomatoid Fungi to Circumvent Host Tree Defenses. Metabolites 2023; 13:239. [PMID: 36837858 PMCID: PMC9968207 DOI: 10.3390/metabo13020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bark beetles maintain symbiotic associations with a diversity of microbial organisms, including ophiostomatoid fungi. Studies have frequently reported the role of ophiostomatoid fungi in bark beetle biology, but how fungal symbionts interact with host chemical defenses over time is needed. We first investigated how inoculations by three fungal symbionts of mountain pine beetle affect the terpene chemistry of live lodgepole pine trees. We then conducted a complimentary laboratory experiment specifically measuring the host metabolite degradation by fungi and collected the fungal organic volatiles following inoculations with the same fungal species on lodgepole pine logs. In both experiments, we analyzed the infected tissues for their terpene chemistry. Additionally, we conducted an olfactometer assay to determine whether adult beetles respond to the volatile organic chemicals emitted from each of the three fungal species. We found that all fungi upregulated terpenes as early as two weeks after inoculations. Similarly, oxygenated monoterpene concentrations also increased by several folds (only in logs). A large majority of beetles tested showed a strong attraction to two fungal species, whereas the other fungus repelled the beetles. Together this study shows that fungal symbionts can alter host defense chemistry, assist beetles in overcoming metabolite toxicity, and provide possible chemical cues for bark beetle attraction.
Collapse
Affiliation(s)
- Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | | | | | | |
Collapse
|
5
|
De Clerck C, Josselin L, Vangoethem V, Lassois L, Fauconnier ML, Jijakli H. Weapons against Themselves: Identification and Use of Quorum Sensing Volatile Molecules to Control Plant Pathogenic Fungi Growth. Microorganisms 2022; 10:microorganisms10122459. [PMID: 36557712 PMCID: PMC9784989 DOI: 10.3390/microorganisms10122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.
Collapse
Affiliation(s)
- Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
- Correspondence:
| | - Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Valentine Vangoethem
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Lab., Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
7
|
Liu Y, Anastacio GR, Ishangulyyeva G, Rodriguez-Ramos JC, Erbilgin N. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources. MICROBIAL ECOLOGY 2021; 81:1106-1110. [PMID: 33404818 DOI: 10.1007/s00248-020-01661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Interactions between mutualistic bark beetles and ophiostomatoid fungi have received considerable attention in recent years. Studies have shown how volatile organic compounds emitted from mutualist fungi affect the behaviors of several bark beetle species. However, we currently lack sufficient knowledge regarding whether bark beetle pheromones can influence mutualist fungi. Here, we measured growth and biomass of two mutualistic fungi of the mountain pine beetle in response to headspace of a beetle pheromone (trans-verbenol), a blend of host tree volatiles, the combination of both, or control (no volatile source) in vitro experiments consisting of a nitrogen-based medium. The surface area and ergosterol content of the mycelia were used as surrogates for fungal growth and biomass respectively. We found that both growth and biomass of Grosmannia clavigera and Ophiostoma montium were greater in medium exposed to any type of volatile sources than the control. While growth and ergosterol content of G. clavigera were highest in the combination treatment, there were no differences in growth or biomass among the types of volatiles introduced for O. montium. These results suggest that both mutualistic fungi can utilize both bark beetle pheromone and host tree volatiles as nutrient sources. Overall, these results support the on-going studies on the role of volatile organic compounds mediating mutualistic bark beetle-fungi interactions.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- School of Ecol & Environ Sci, East China Normal Univ, Shanghai, China
| | - Gean Rodrigues Anastacio
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- College of Agriculture, Department of Biology, University of São Paulo, São Paulo, Brazil
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | | | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|