1
|
Wu C, Zhou S, Xie C, Chen D, Zheng L. Molecular characterization of a novel deltaflexivirus from the plant-pathogenic fungus Neopestalotiopsis nebuloides strain N-7. Arch Virol 2025; 170:50. [PMID: 39922962 DOI: 10.1007/s00705-025-06219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/21/2024] [Indexed: 02/10/2025]
Abstract
The full genome sequence of a positive-sense (+) single-stranded (ss) RNA virus, which we have named "Neopestalotiopsis nebuloides deltaflexivirus 1" (NnDFV1), from Neopestalotiopsis nebuloides strain N-7 was sequenced and analyzed. The NnDFV1 genome is 7,719 nucleotides in length with a GC content of 49%, excluding the poly(A) tail, and contains a large open reading frame (ORF1) and three smaller ORFs (2-4). ORF1 encodes a replication-associated polyprotein (RP) consisting of three conserved domains: viral methyltransferase (Mtr), viral helicase (Hel), and RNA-dependent RNA polymerase (RdRp), whereas ORFs 2-4 encode three hypothetical proteins (18-20 kDa). Phylogenetic analysis showed that NnDFV1 formed a distinct clade together with Pestalotiopsis deltaflexivirus 1 (PDFV1), which is a new member of the genus Deltaflexivirus within the family Deltaflexiviridae. This is the first report of a novel deltaflexivirus found in the phytopathogenic fungus Neopestalotiopsis nebuloides.
Collapse
Affiliation(s)
- Caiming Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Siyu Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Changping Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Daipeng Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China.
| | - Li Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
| |
Collapse
|
2
|
Han Z, Jiang J, Xu W. Novel polymycoviruses are encapsidated in filamentous virions. J Virol 2025; 99:e0151524. [PMID: 39655956 PMCID: PMC11784019 DOI: 10.1128/jvi.01515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 02/01/2025] Open
Abstract
Polymycoviridae is a relatively new viral family that was established nearly 5 years ago, but their viral morphologies (naked or encapsidated) remain controversial since only one member namely, Colletotrichum camelliae filamentous virus 1 (CcFV1), was identified as being encapsidated in filamentous virions. Here, three novel double-stranded RNA (dsRNA) viruses belonging to the family Polymycoviridae were identified in three phytopathogenic fungal strains and tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1 (PcsPmV1), and Phyllosticta capitalensis polymycovirus 1 and 2 (PhcPmV1 and 2), respectively. PcsPmV1 and PhcPmVs have five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, encoding five or seven putative open reading frames (ORFs), of which ORF1 encodes an RNA-dependent RNA polymerase, ORF5 encodes a prolein-alanine-serine-rich (P-A-S-rich) protein behaving as coat protein (CP); and dsRNAs 4 and 6 encode putative proteins with unknown functions and share no detectable identities with known viral sequences. Upon examination under transmission electron microscopy after purification from fungal mycelia, PcsPmV1 and PhcPmVs were found to be encapsidated in filamentous particles, as was a known polymycovirus, Botryosphaeria dothidea RNA virus 1 (BdRV1), which was previously assumed to likely have no conventional virions. The morphology of PcsPmV1 was further supported by the observation that its particles could be decorated by polyclonal antibodies against its CP and bound by immuno-gold particles conjugated to the specific CP antibody. Together with CcFV1, BdRV1, PcsPmV1, and PhcPmVs, these provide strong evidence to support the notion that polymycoviruses are encapsidated in filamentous virions constituted by P-A-S-rich CPs. Moreover, their biological effects on their fungal hosts were assessed, suggesting that PcsPmV1 infection could enhance growth and virulence.IMPORTANCEPolymycoviridae, a recently established viral family, has raised questions about encapsidation. Here, we identify and characterize three novel polymycoviral double-stranded RNA (dsRNA) viruses in phytopathogenic fungal strains, tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1, and Phyllosticta capitalensis polymycovirus 1 and 2, respectively. These polymycoviruses possess five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, with two encoding putative proteins of unknown functions and sharing no detectable identities with known viral sequences. Their morphologies indicate filamentous virions constituted by proline-alanine-serine-rich coat proteins, observed using immunosorbent electron microscopy combined with immune-gold labeling techniques. Additionally, Botryosphaeria dothidea RNA virus 1, previously assumed to lack conventional virions, is also shown to be encapsidated in filamentous particles. This study provides new evidence supporting the encapsidation of polymycoviruses into elongated and flexuous virions, significantly contributing to our understanding of the evolutionary particle architecture within the virosphere and expanding our knowledge of viral diversity and evolution. Moreover, this is the first report of a polymycovirus enhancing the virulence and growth of a phytopathogenic fungus.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jingjing Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Filippou C, Coutts RHA, Kotta-Loizou I, El-Kamand S, Papanicolaou A. Transcriptomic Analysis Reveals Molecular Mechanisms Underpinning Mycovirus-Mediated Hypervirulence in Beauveria bassiana Infecting Tenebrio molitor. J Fungi (Basel) 2025; 11:63. [PMID: 39852482 PMCID: PMC11766762 DOI: 10.3390/jof11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Mycoviral infection can either be asymptomatic or have marked effects on fungal hosts, influencing them either positively or negatively. To fully understand the effects of mycovirus infection on the fungal host, transcriptomic profiling of four Beauveria bassiana isolates, including EABb 92/11-Dm that harbors mycoviruses, was performed 48 h following infection of Tenebrio molitor via topical application or injection. Genes that participate in carbohydrate assimilation and transportation, and those essential for fungal survival and oxidative stress tolerance, calcium uptake, and iron uptake, were found to be overexpressed in the virus-infected isolate during the mid-infection stage. Mycotoxin genes encoding bassianolide and oosporein were switched off in all isolates. However, beauvericin, a mycotoxin capable of inducing oxidative stress at the molecular level, was expressed in all four isolates, indicating an important contribution to virulence against T. molitor. These observations suggest that detoxification of immune-related (oxidative) defenses and nutrient scouting, as mediated by these genes, occurs in mid-infection during the internal growth phase. Consequently, we observe a symbiotic relationship between mycovirus and fungus that does not afflict the host; on the contrary, it enhances the expression of key genes leading to a mycovirus-mediated hypervirulence effect.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sam El-Kamand
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| |
Collapse
|
4
|
Sui L, Lu Y, Xu M, Liu J, Zhao Y, Li Q, Zhang Z. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence 2024; 15:2401978. [PMID: 39263889 PMCID: PMC11404608 DOI: 10.1080/21505594.2024.2401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Mengnan Xu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
5
|
Buma S, Urayama SI, Suo R, Itoi S, Okada S, Ninomiya A. Mycoviruses from Aspergillus fungi involved in fermentation of dried bonito. Virus Res 2024; 350:199470. [PMID: 39321926 PMCID: PMC11736405 DOI: 10.1016/j.virusres.2024.199470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Fungi are exploited for fermentation of foods such as cheese, Japanese sake, and soy sauce. However, the diversity of viruses that infect fungi involved in food fermentation is poorly understood. Fermented dried bonito ("katsuobushi") is one of the most important processed marine products in Japan. Fungi involved in katsuobushi fermentation are called katsuobushi molds, and Aspergillus spp. have been reported to be dominant on the surface of katsuobushi during fermentation. Because various mycoviruses have been found in members of the genus Aspergillus, we hypothesized that katsuobushi molds are also infected with mycoviruses. Here, we describe seven novel mycoviruses belonging to six families (Chrysoviridae, Fusariviridae, Mitoviridae, Partitiviridae, Polymycoviridae, and Pseudototiviridae) from isolated katsuobushi molds (Aspergillus chevalieri and A. sulphureus) detected by fragmented and primer-ligated double-stranded RNA sequencing. Aspergillus chevalieri fusarivirus 1 has a unique bi-segmented genome, whereas other known fusariviruses have a single genomic segment. Phenotypic comparison between the parental A. chevalieri strain infected with Aspergillus chevalieri polymycovirus 1 (AchPmV1) and isogenic AchPmV1-free isolates indicated that AchPmV1 inhibits the early growth of the host. This study reveals the diversity of mycoviruses that infect katsuobushi molds, and provides insight into the effect of mycoviruses on fungi involved in fermentation.
Collapse
Affiliation(s)
- Seiji Buma
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akihiro Ninomiya
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
6
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
7
|
Jiang X, Wang M, Yang S, He D, Fang F, Yang L. The response of structure and nitrogen removal function of the biofilm on submerged macrophytes to high ammonium in constructed wetlands. J Environ Sci (China) 2024; 142:129-141. [PMID: 38527879 DOI: 10.1016/j.jes.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fei Fang
- School of Resources and Environment, Anqing Normal University, Anqing 246133, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Clemons RA, Yacoub MN, Faust E, Toledo LF, Jenkinson TS, Carvalho T, Simmons DR, Kalinka E, Fritz-Laylin LK, James TY, Stajich JE. An endogenous DNA virus in an amphibian-killing fungus associated with pathogen genotype and virulence. Curr Biol 2024; 34:1469-1478.e6. [PMID: 38490202 DOI: 10.1016/j.cub.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.
Collapse
Affiliation(s)
- Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark N Yacoub
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Evelyn Faust
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal Instituto de Biologia (IB), Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil
| | - Thomas S Jenkinson
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94592, USA
| | - Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - D Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik Kalinka
- Department of Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
10
|
Jaccard A, Dubuis N, Kellenberger I, Brodard J, Schnee S, Gindro K, Schumpp O. New viruses of Cladosporium sp. expand considerably the taxonomic structure of Gammapartitivirus genus. J Gen Virol 2023; 104:001879. [PMID: 37549001 PMCID: PMC10539651 DOI: 10.1099/jgv.0.001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.
Collapse
Affiliation(s)
| | - Nathalie Dubuis
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | | | - Justine Brodard
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Sylvain Schnee
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Katia Gindro
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| |
Collapse
|
11
|
Wang P, Yang G, Lu H, Huang B. Infection with a novel polymycovirus enhances growth, conidiation and sensitivity to UV-B irradiation of the entomopathogenic fungus Metarhizium anisopliae. Front Microbiol 2023; 14:1214133. [PMID: 37469432 PMCID: PMC10352681 DOI: 10.3389/fmicb.2023.1214133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Metarhizium anisopliae is a well-studied entomopathogenic fungus that is widely used in biological control programs. The presence of polymycoviruses in this fungus is common, but their effects on fungal development and stress tolerance are not well understood. In this study, we report the discovery of a novel double-stranded RNA virus, named Metarhizium anisopliae polymycovirus 1 (MaPmV1), which comprises four dsRNAs ranging from 2.4 to 1.4 kbp in length. Phylogenetic analysis revealed that MaPmV1 belongs to the Polymycoviridae family. Biological comparison between MaPmV1-infected (Vi) and -free (Vf) isogenic lines showed that MaPmV1 remarkably enhances the growth rate and conidiation of the host fungus. The upregulation of growth- and conidiation-related genes in Vi strains supports this finding. In addition, MaPmV1 increases the sensitivity of the host to UV-B irradiation, which is evidenced by the downregulation of DNA damage repair genes in Vi strains. However, MaPmV1 does not appear to have any significant impact on the virulence of M. anisopliae. Furthermore, overexpression of individual viral proteins in M. anisopliae did not result in any significant phenotypic alterations, indicating that MaPmV1-mediated changes are not related to a single viral protein. Overall, our findings suggest that mycoviruses can be exploited to enhance fungal development in entomopathogenic fungi, which may lead to improved conidium production on a large scale.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hanwen Lu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Zheng Y, Chen M, Li X, Dai F, Gao Z, Deng Q, Fang S, Zhang S, Pan S. Four distinct isolates of a novel polymycovirus identified in Setosphaeria turcica. Arch Virol 2023; 168:189. [PMID: 37351692 DOI: 10.1007/s00705-023-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Miaomiao Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Xiquan Li
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China.
| |
Collapse
|
13
|
Liu C, Jiang X, Tan Z, Wang R, Shang Q, Li H, Xu S, Aranda MA, Wu B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol Spectr 2023; 11:e0522822. [PMID: 37022156 PMCID: PMC10269472 DOI: 10.1128/spectrum.05228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 04/07/2023] Open
Abstract
In fungi, viral infections frequently remain cryptic causing little or no phenotypic changes. It can indicate either a long history of coevolution or a strong immune system of the host. Some fungi are outstandingly ubiquitous and can be recovered from a great diversity of habitats. However, the role of viral infection in the emergence of environmental opportunistic species is not known. The genus of filamentous and mycoparasitic fungi Trichoderma (Hypocreales, Ascomycota) consists of more than 400 species, which mainly occur on dead wood, other fungi, or as endo- and epiphytes. However, some species are environmental opportunists because they are cosmopolitan, can establish in a diversity of habitats, and can also become pests on mushroom farms and infect immunocompromised humans. In this study, we investigated the library of 163 Trichoderma strains isolated from grassland soils in Inner Mongolia, China, and found only four strains with signs of the mycoviral nucleic acids, including a strain of T. barbatum infected with a novel strain of the Polymycoviridae and named and characterized here as Trichoderma barbatum polymycovirus 1 (TbPMV1). Phylogenetic analysis suggested that TbPMV1 was evolutionarily distinct from the Polymycoviridae isolated either from Eurotialean fungi or from the order Magnaportales. Although the Polymycoviridae viruses were also known from Hypocrealean Beauveria bassiana, the phylogeny of TbPMV1 did not reflect the phylogeny of the host. Our analysis lays the groundwork for further in-depth characterization of TbPMV1 and the role of mycoviruses in the emergence of environmental opportunism in Trichoderma. IMPORTANCE Although viruses infect all organisms, our knowledge of some groups of eukaryotes remains limited. For instance, the diversity of viruses infecting fungi-mycoviruses-is largely unknown. However, the knowledge of viruses associated with industrially relevant and plant-beneficial fungi, such as Trichoderma spp. (Hypocreales, Ascomycota), may shed light on the stability of their phenotypes and the expression of beneficial traits. In this study, we screened the library of soilborne Trichoderma strains because these isolates may be developed into bioeffectors for plant protection and sustainable agriculture. Notably, the diversity of endophytic viruses in soil Trichoderma was outstandingly low. Only 2% of 163 strains contained traces of dsRNA viruses, including the new Trichoderma barbatum polymycovirus 1 (TbPMV1) characterized in this study. TbPMV1 is the first mycovirus found in Trichoderma. Our results indicate that the limited data prevent the in-depth study of the evolutionary relationship between soilborne fungi and is worth further investigation.
Collapse
Affiliation(s)
- Chenchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Hongrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Shujin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RHA, Kotta-Loizou I, Huang B. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathog 2023; 19:e1011397. [PMID: 37216409 DOI: 10.1371/journal.ppat.1011397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Cheng Zhao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
16
|
Hwang DY, Kim S, Woo SD, Shin TY, Coutts RHA, Kotta-Loizou I. Incidence of putative RNA mycoviruses in entomopathogenic fungi in Korea. Arch Virol 2023; 168:145. [PMID: 37076649 DOI: 10.1007/s00705-023-05765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Entomopathogenic fungi have potential as biocontrol agents against insect pests, and mycovirus-mediated hypervirulence may enhance their efficacy. Before initiating research on hypervirulence, the presence or absence of double-stranded (ds) RNA elements was determined in 94 Korean entomopathogenic fungi. dsRNA elements varying in size from ca. 0.8 to 7 kbp were found in 14.9% (14/94) of the strains examined, including Beauveria bassiana, Metarhizium pemphigi, M. pinghaense, M. rileyi, and Cordyceps fumosorosea. This study provides information on the incidence and electrophoretic banding patterns of dsRNA elements and is the first report of mycoviruses entomopathogenic fungi in Korea.
Collapse
Affiliation(s)
- Dong Young Hwang
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea
| | - Seulki Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea
| | - Soo Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, 28644, Cheongju, Korea
| | - Tae Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea.
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
17
|
Kang Q, Ning S, Sui L, Lu Y, Zhao Y, Shi W, Li Q, Zhang Z. Transcriptomic analysis of entomopathogenic fungus Beauveria bassiana infected by a hypervirulent polymycovirus BbPmV-4. Fungal Biol 2023; 127:958-967. [PMID: 36906386 DOI: 10.1016/j.funbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Polymycoviridae is a recently established family of mycoviruses. Beauveria bassiana polymycovirus 4 (BbPmV-4) was previously reported. However, the effect of the virus on host fungus B. bassiana was not clarified. Here, a comparison between virus-free and virus-infected isogenic lines of B. bassiana revealed that BbPmV-4 infection of B. bassiana changes morphology and could lead to decreases in conidiation and increases in virulence against Ostrinia furnacalis larvae. The differential expression of genes between virus-free and virus-infected strains was compared by RNA-Seq and was consistent with the phenotype of B. bassiana. The enhanced pathogenicity may be related to the significant up-regulation of genes encoding mitogen activated protein kinase, cytochrome P450, and polyketide synthase. The results enable studies of the mechanism of interaction between BbPmV-4 and B. bassiana.
Collapse
Affiliation(s)
- Qin Kang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Siyu Ning
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China.
| |
Collapse
|
18
|
da Silva Camargo M, Geremia F, Sbaraini N, Staats CC, Filho MS, Schrank A. Molecular characterization of a novel victorivirus (order Ghabrivirales, family Totiviridae) infecting Metarhizium anisopliae. Arch Virol 2023; 168:83. [PMID: 36757570 DOI: 10.1007/s00705-023-05716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 02/10/2023]
Abstract
Here, we report the occurrence and complete genome sequence of a novel victorivirus infecting Metarhizium anisopliae, named "Metarhizium anisopliae victorivirus 1" (MaVV1). The genome is 5353 bp in length and contains two open reading frames (ORFs), encoding a coat protein and an RNA-dependent RNA polymerase (RdRp), that overlap at the octanucleotide sequence AUGAGUAA. These ORFs showed sequence similarity to the corresponding ORFs of Ustilaginoidea virens RNA virus L (68.23%) and Ustilaginoidea virens RNA virus 13 (58.11%), respectively, both of which belong to the family Totiviridae. Phylogenetic analysis based on RdRp sequences revealed that MaVV1 clustered with members of the genus Victorivirus. This is the first genome sequence reported for a virus belonging to the genus Victorivirus infecting the entomopathogenic fungus M. anisopliae.
Collapse
Affiliation(s)
- Matheus da Silva Camargo
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Geremia
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Charley Christian Staats
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio Silva Filho
- Department of Genetics, ESALQ, Universidade de São Paulo, Piracicaba, Brazil
| | - Augusto Schrank
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Cellular and Molecular Biology of Filamentous Fungi Laboratory, Biotechnology Center, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves AveLab 217, Campus Box 43421, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| |
Collapse
|
19
|
He L, Wang P, Yang G, Chen X, Huang B. A novel polymycovirus infecting the entomopathogenic fungus Metarhizium brunneum. Arch Virol 2023; 168:6. [DOI: 10.1007/s00705-022-05684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
|
20
|
Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res 2022; 322:198933. [PMID: 36165923 DOI: 10.1016/j.virusres.2022.198933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
Mycoviruses can spread interspecifically and intraspecifically in plant pathogenic fungi, as well as spreading intraspecifically in entomogenous fungi, especially Beauveria bassiana. However, whether mycoviruses are common in Beauveria spp. and can spread interspecifically between Beauveria species are unclear. Herein, four Beauveria species, but not B. bassiana, were randomly selected for double stranded RNA (dsRNA) detection. Furthermore, two previously reported dsRNA mycoviruses from B. bassiana, BbCV-2 and BbPmV-4, were used to study the interspecific transmission among B. bassiana, B. amorpha, and B. aranearum, using hyphal anastomosis and a novel insect coinfection transmission method. The results showed that dsRNA mycoviruses exist universally in Beauveria spp. and could spread interspecifically between different Beauveria species. The transmission efficiency from B. bassiana to the other two Beauveria species was significantly higher than that of the reverse transmission. Both viruses could stably and vertically spread in B. amorpha and B. aranearum, which affected their growth rate and colony morphology.
Collapse
|
21
|
Teng L, Chen S, Hu Z, Chen J, Liu H, Zhang T. Molecular characterization and transcriptomic analysis of a novel polymycovirus in the fungus Talaromyces amestolkiae. Front Microbiol 2022; 13:1008409. [PMID: 36386701 PMCID: PMC9645161 DOI: 10.3389/fmicb.2022.1008409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Talaromyces amestolkiae is an important fungal species owing to its ubiquity in soils, plants, air, and food. In this study, we identified a novel six-segmented polymycovirus, Talaromyces amestolkiae polymycovirus 1 (TaPmV-1). Each of the double-stranded (ds) RNA segments of TaPmV-1 contained a single open reading frame, and the proteins encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA 5 shared significant amino acid identities of 56, 40, 47, and 43%, respectively, with the corresponding proteins of Aspergillus fumigatus polymycovirus-1(AfuPmV-1). DsRNA1, dsRNA3, and dsRNA5 of TaPmV-1 encoded an RNA-dependent RNA polymerase (RdRp), a viral methyltransferase, and a PAS-rich protein, respectively. The functions of the proteins encoded by dsRNA2, dsRNA4, and dsRNA6 have not been elucidated. Comparison of the virus-infected strain LSH3 with virus-cured strain LSHVF revealed that infection with TaPmV-l may reduce the production of red pigments and induce the clustering of fungal sclerotia. Furthermore, transcriptomic analyses demonstrated that infection with TaPmV-l downregulated the expression of transcripts related to metabolism, and may correlate with the reduced production of red pigments and clustering of sclerotia in T. amestolkiae. These results of this study provide novel insights into the mechanism of fungal gene regulation by polymycovirus infections at the transcriptome level, and this study is the first to report a novel polymycovirus of T. amestolkiae.
Collapse
Affiliation(s)
- Li Teng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Sen Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Jili Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Hongmei Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| | - Tingting Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| |
Collapse
|
22
|
Metatranscriptomic Analysis Reveals Rich Mycoviral Diversity in Three Major Fungal Pathogens of Rice. Int J Mol Sci 2022; 23:ijms23169192. [PMID: 36012458 PMCID: PMC9409214 DOI: 10.3390/ijms23169192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, three major fungal diseases of rice, i.e., rice blast, rice false smut, and rice-sheath blight, have caused serious worldwide rice-yield reductions and are threatening global food security. Mycoviruses are ubiquitous in almost all major groups of filamentous fungi, oomycetes, and yeasts. To reveal the mycoviral diversity in three major fungal pathogens of rice, we performed a metatranscriptomic analysis of 343 strains, representing the three major fungal pathogens of rice, Pyricularia oryzae, Ustilaginoidea virens, and Rhizoctonia solani, sampled in southern China. The analysis identified 682 contigs representing the partial or complete genomes of 68 mycoviruses, with 42 described for the first time. These mycoviruses showed affinity with eight distinct lineages: Botourmiaviridae, Partitiviridae, Totiviridae, Chrysoviridae, Hypoviridae, Mitoviridae, Narnaviridae, and Polymycoviridae. More than half (36/68, 52.9%) of the viral sequences were predicted to be members of the families Narnaviridae and Botourmiaviridae. The members of the family Polymycoviridae were also identified for the first time in the three major fungal pathogens of rice. These findings are of great significance for understanding the diversity, origin, and evolution of, as well as the relationship between, genome structures and functions of mycoviruses in three major fungal pathogens of rice.
Collapse
|
23
|
Kotta-Loizou I, Coutts RHA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Polymycoviridae 2022. J Gen Virol 2022; 103. [PMID: 35639592 DOI: 10.1099/jgv.0.001747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Members of the family Polymycoviridae are small viruses with multi-segmented and non-conventionally encapsidated double-stranded (ds) RNA genomes. Typically, polymycoviruses have four genomic segments, although some have up to eight. The genus Polymycovirus includes several species whose members infect fungi (ascomycetes and basidiomycetes), and oomycetes, altering host morphology, sporulation, growth and virulence. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Polymycoviridae, which is available at ictv.global/report/polymycoviridae.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | |
Collapse
|
24
|
Wang X, Lai J, Hu H, Yang J, Zang K, Zhao F, Zeng G, Liao Q, Gu Z, Du Z. Infection of Nigrospora nonsegmented RNA Virus 1 Has Important Biological Impacts on a Fungal Host. Viruses 2022; 14:v14040795. [PMID: 35458525 PMCID: PMC9029208 DOI: 10.3390/v14040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Nigrospora nonsegmented RNA virus 1 (NoNRV1) has been reported previously in the fungus Nigrospora oryzae, but its biological effects on its host are unknown. In this work, we isolated a strain 9-1 of N. oryzae from a chrysanthemum leaf and identified NoNRV1 infection in the isolated strain. The genome sequence of NoNRV1 identified here is highly homologous to that of the isolate HN-21 of NoNRV1 previously reported; thus, we tentatively designated the newly identified NoNRV1 as NoNRV1-ZJ. Drug treatment with Ribavirin successfully removed NoNRV1-ZJ from the strain 9-1, which provided us with an ideal control to determine the biological impacts of NoNRV1 infection on host fungi. By comparing the virus-carrying (9-1) and virus-cured (9-1C) strains, our results indicated that infection with NoNRV1 promoted the pigmentation of the host cells, while it had no discernable effects on host growth on potato dextrose agar plates when subjected to osmotic or oxidative stress. Interestingly, we observed inhibitory impacts of virus infection on the thermotolerance of N. oryzae and the pathogenicity of the host fungus in cotton leaves. Collectively, our work provides clear evidence of the biological relevance of NoNRV1 infection in N. oryzae, including pigmentation, hypovirulence, and thermotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhouhang Gu
- Correspondence: (Z.G.); (Z.D.); Tel.: +86-571-8684-3195 (Z.D.)
| | - Zhiyou Du
- Correspondence: (Z.G.); (Z.D.); Tel.: +86-571-8684-3195 (Z.D.)
| |
Collapse
|
25
|
Kang Q, Li L, Li J, Zhang S, Xie J, Li Q, Zhang Z. A novel polymycovirus with defective RNA isolated from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3487-3492. [PMID: 34623502 DOI: 10.1007/s00705-021-05238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A novel double-stranded RNA virus was isolated and identified from Beauveria bassiana Vuillemin, derived from the muscardine cadaver of an Ostrinia furnacalis larva in China. The virus contains six dsRNAs, and each viral dsRNA contains only one open reading frame (ORF). As in other polymycoviruses, dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA3 encodes a methyltransferase (MTR), and dsRNA4 encodes a proline-alanine-serine-rich protein. A BLASTp search revealed that the viral RdRp domain showed 79.43%, 79.04%, and 59.05% sequence identity to Beauveria bassiana polymycovirus 2 and 3 (BbPmV-2, BbPmV-3) and Magnaporthe oryzae polymycovirus 1 (MoPmV-1), respectively. Phylogenetic analysis based on RdRp sequences showed that the phylogenetically closest relatives of this virus are BbPmV-2, BbPmV-3, and MoPmV-1. This virus, along with previously ill-defined polymycoviruses (BbPmV-2 and BbPmV-3), appears to belong to an as-yet-unestablished species. The findings further suggest that the virus is a new member of the genus Polymycovirus within the family Polymycoviridae, and we have named it "Beauveria bassiana polymycovirus 4" (BbPmV-4). However, the sixth dsRNA is a defective RNA with the same sequence as that of dsRNA4 except for a deletion of 312 bp from nt 185 to nt 496, but it still contains a complete ORF. To our knowledge, this is the first report of the existence of a defective RNA in a polymycovirus.
Collapse
Affiliation(s)
- Qin Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyun Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China. .,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
26
|
Freeing Aspergillus fumigatus of Polymycovirus Infection Renders It More Resistant to Competition with Pseudomonas aeruginosa Due to Altered Iron-Acquiring Tactics. J Fungi (Basel) 2021; 7:jof7070497. [PMID: 34206595 PMCID: PMC8306778 DOI: 10.3390/jof7070497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022] Open
Abstract
A virus-free (VF) A. fumigatus isolate has been shown to be resistant in competition with Pseudomonas as compared to the isogenic line infected with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1), and this phenotype was apparently related to alterations in iron metabolism. Here we investigated further the mechanisms underpinning this phenotype. The extracellular siderophore profiles of five isogenic VF and virus-infected (VI) strains were sampled at 24, 31, 48, 54, and 72 h in submerged cultures and quantitatively examined by liquid chromatography and mass spectrometry. Intracellular profiles of conidia and cultures at the stationary growth phase were defined. VF A. fumigatus demonstrated the best fitness represented by the fastest onset of its exponential growth when grown on an iron-limited mineral medium. The exponential phase and transitional production phase of the extracellular triacetylfusarinine C (TafC) were achieved at 24 and 31 h, respectively, contrary to VI strains, which acted more slowly. As a result, the TafC reservoir was consumed sooner in the VF strain. Additionally, the VF strain had lower ferricrocin and higher hydroxyferricrocin content in the pellet during the stationary phase. All of these differences were significant (Kruskal–Wallis, p < 0.01). In our study, the siderophore reservoir of a VF strain was consumed sooner, improving the fitness of the VF strain in competition with P. aeruginosa.
Collapse
|
27
|
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. Curr Opin Microbiol 2021; 63:10-18. [PMID: 34102567 DOI: 10.1016/j.mib.2021.05.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, the focus of mycovirology research has expanded from plant pathogenic fungi and mycovirus mediated hypovirulence to include insect and human pathogenic fungi together with a range of mycovirus mediated phenotypes, such as hypervirulence, control of endophytic traits, regulation of metabolite production and drug resistance. In fungus-mycovirus-environmental interactions, the environment and both abiotic and biotic factors play crucial roles in whether and how mycovirus mediated phenotypes are manifest. Mycovirus infections result in alterations in the host transcriptome profile, via protein-protein interactions and triggering of antiviral RNA silencing in the fungus. These alterations, in combination with the environmental factors, may result in desirable phenotypic traits for the host, for us and in some cases for both.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom.
| |
Collapse
|
28
|
Nazik H, Kotta-Loizou I, Sass G, Coutts RHA, Stevens DA. Virus Infection of Aspergillus fumigatus Compromises the Fungus in Intermicrobial Competition. Viruses 2021; 13:v13040686. [PMID: 33923408 PMCID: PMC8073786 DOI: 10.3390/v13040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Aspergillus and Pseudomonas compete in nature, and are the commonest bacterial and fungal pathogens in some clinical settings, such as the cystic fibrosis lung. Virus infections of fungi occur naturally. Effects on fungal physiology need delineation. A common reference Aspergillus fumigatus strain, long studied in two (of many) laboratories, was found infected with the AfuPmV-1 virus. One isolate was cured of virus, producing a virus-free strain. Virus from the infected strain was purified and used to re-infect three subcultures of the virus-free fungus, producing six fungal strains, otherwise isogenic. They were studied in intermicrobial competition with Pseudomonasaeruginosa. Pseudomonas culture filtrates inhibited forming or preformed Aspergillus biofilm from infected strains to a greater extent, also seen when Pseudomonas volatiles were assayed on Aspergillus. Purified iron-chelating Pseudomonas molecules, known inhibitors of Aspergillus biofilm, reproduced these differences. Iron, a stimulus of Aspergillus, enhanced the virus-free fungus, compared to infected. All infected fungal strains behaved similarly in assays. We show an important consequence of virus infection, a weakening in intermicrobial competition. Viral infection may affect the outcome of bacterial–fungal competition in nature and patients. We suggest that this occurs via alteration in fungal stress responses, the mechanism best delineated here is a result of virus-induced altered Aspergillus iron metabolism.
Collapse
Affiliation(s)
- Hasan Nazik
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Gabriele Sass
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - David A. Stevens
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 95128, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|