1
|
Mattsson L, Farnelid H, Hirwa M, Olofsson M, Svensson F, Legrand C, Lindehoff E. Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11142. [PMID: 39415406 DOI: 10.1002/wer.11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO2 effluent. Total N (TN) removal was higher in spring (1.5 g-2d-1), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g-2d-1). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g-2d-1), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.
Collapse
Affiliation(s)
- Lina Mattsson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Maurice Hirwa
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin Olofsson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
- BioResM, Kalmar, Sweden
| | - Fredrik Svensson
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Sushmitha TJ, Rajeev M, Murthy PS, Rao TS, Pandian SK. Planktonic and early-stage biofilm microbiota respond contrastingly to thermal discharge-created seawater warming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115433. [PMID: 37696079 DOI: 10.1016/j.ecoenv.2023.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Thermal-discharges from power plants highly disturb the biological communities of the receiving water body and understanding their influence is critical, given the relevance to global warming. We employed 16 S rRNA gene sequencing to examine the response of two dominant marine bacterial lifestyles (planktonic and biofilm) against elevated seawater temperature (+5 ℃). Obtained results demonstrated that warming prompted high heterogeneity in diversity and composition of planktonic and biofilm microbiota, albeit both communities responded contrastingly. Alpha diversity revealed that temperature exhibited positive effect on biofilm microbiota and negative effect on planktonic microbiota. The community composition of planktonic microbiota shifted significantly in warming area, with decreased abundances of Bacteroidetes, Cyanobacteria, and Actinobacteria. Contrastingly, these bacterial groups exhibited opposite trend in biofilm microbiota. Co-occurrence networks of biofilm microbiota displayed higher node diversity and co-presence in warming area. The study concludes that with increasing ocean warming, marine biofilms and biofouling management strategies will be more challenging.
Collapse
Affiliation(s)
- T J Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - P Sriyutha Murthy
- Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Toleti Subba Rao
- School of Arts & Sciences, Sai University, OMR, Paiyanur, 603105 Tamil Nadu, India
| | | |
Collapse
|
4
|
Samiotis G, Ziagova MG, Amanatidou E. Wastewater substrate disinfection for cyanobacteria cultivation as tertiary treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8746-8758. [PMID: 35478395 DOI: 10.1007/s11356-022-20369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Cultivation of microalgae or/and cyanobacteria in nutrient-rich wastewaters offers an opportunity for enhancing sustainability of tertiary wastewater treatment processes via resources/energy recovery/production, mitigation of emitted GHGs and provision of added value products. However, maintaining a monoculture in wastewater-media constitutes a significant challenge to be addressed. In this regard, the present work assesses the efficiency of the low-cost wastewater substrate disinfection techniques of filtration, use of NaClO, H2O2 or Fe(VI), as a preliminary treatment stage upstream a cyanobacteria cultivation photobioreactor. The growth rate of cyanobacterium Synechococcus elongatus PCC 7942, and nitrate and phosphate removal rates, were experimentally assessed in cultivation setups with biologically treated dairy wastewater that had been subjected to a single or a synergetic couple of disinfection techniques. The results showed that filter thickness has a greater effect on disinfection efficiency than filter pore size. Furthermore, the disinfection efficiency of Fe(VI), which was produced on-site by electrosynthesis via a Fe0/Fe0 cell, was greater than that of NaClO and H2O2. Filtration at ≤ 1.2-μm pore size coupled with chemical disinfection led to unhindered Synechococcus elongatus PCC 7942 growth and efficient nitrate and phosphate removal rates, at dosages, in terms of Concentreation-Time (CT) product, of CT ≥ 270 mg min L-1 for NaClO and CT ≥ 157 mg min L-1 for Fe(VI). The coagulation action of Fe(III) species that result from Fe(VI) reduction and the oxidation action of Fe(VI) can assist in turbidity, organic compounds and phosphorous removal from wastewater media. Moreover, the residual iron species can assist in Synechococcus elongatus PCC 7942 harvesting and may enhance photosynthesis rate by increasing light transfer efficiency. Thus, a filtration configuration coupled with chemical disinfection, preferably using ferrates, downstream of sedimentation tank of a secondary biological wastewater treatment stage is proposed as a necessary, efficient and low-cost disinfection technique for full-scale scale implementation of cyanobacteria cultivation as tertiary wastewater processes.
Collapse
Affiliation(s)
- Georgios Samiotis
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece
| | - Maria G Ziagova
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece
| | - Elisavet Amanatidou
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece.
| |
Collapse
|
5
|
Synergy between microalgae and microbiome in polluted waters. Trends Microbiol 2023; 31:9-21. [PMID: 35985939 DOI: 10.1016/j.tim.2022.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
Microalga-microbiome interactions are central to both health and disease of aquatic environments. Despite impressive advances in deciphering how microorganisms participate in and impact aquatic ecosystems, the evolution and ecological involvement of microalgae and the microbiome in polluted waters are typically studied independently. Here, the phycosphere (i.e., the consortia of microalgae and the related microbiome) is regarded as an independent and integrated life form, and we summarize the survival strategies exhibited by this symbiont when exposed to anthropogenic pollution. We highlight the cellular strategies and discuss the modulation at the transcriptional and population levels, which reciprocally alters community structure or genome composition for medium-term acclimation or long-term adaptation. We propose a 'PollutantBiome' concept to help the understanding of microalga-microbiome interactions and development of beneficial microbial synthetic communities for pollutant remediation.
Collapse
|
6
|
Tamoor M, Samak NA, Jia Y, Mushtaq MU, Sher H, Bibi M, Xing J. Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution. Front Microbiol 2021; 12:777727. [PMID: 34917057 PMCID: PMC8670383 DOI: 10.3389/fmicb.2021.777727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET's carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail.
Collapse
Affiliation(s)
- Muhammad Tamoor
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Biofilm Centre, Aquatic Microbiology Department, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Umar Mushtaq
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Hassan Sher
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Maryam Bibi
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, China
| |
Collapse
|
7
|
Mattsson L, Sörenson E, Capo E, Farnelid HM, Hirwa M, Olofsson M, Svensson F, Lindehoff E, Legrand C. Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System. Front Bioeng Biotechnol 2021; 9:651895. [PMID: 33968914 PMCID: PMC8100445 DOI: 10.3389/fbioe.2021.651895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
Functionally uniform monocultures have remained the paradigm in microalgal cultivation despite the apparent challenges to avoid invasions by other microorganisms. A mixed microbial consortium approach has the potential to optimize and maintain biomass production despite of seasonal changes and to be more resilient toward contaminations. Here we present a 3-year outdoor production of mixed consortia of locally adapted microalgae and bacteria in cold temperate latitude. Microalgal consortia were cultivated in flat panel photobioreactors using brackish Baltic Sea water and CO2 from a cement factory (Degerhamn, Cementa AB, Heidelberg Cement Group) as a sustainable CO2 source. To evaluate the ability of the microbial consortia to maintain stable biomass production while exposed to seasonal changes in both light and temperature, we tracked changes in the microbial community using molecular methods (16S and 18S rDNA amplicon sequencing) and monitored the biomass production and quality (lipid, protein, and carbohydrate content) over 3 years. Despite changes in environmental conditions, the mixed consortia maintained stable biomass production by alternating between two different predominant green microalgae (Monoraphidium and Mychonastes) with complementary tolerance to temperature. The bacterial population was few taxa co-occured over time and the composition did not have any connection to the shifts in microalgal taxa. We propose that a locally adapted and mixed microalgal consortia, with complementary traits, can be useful for optimizing yield of commercial scale microalgal cultivation.
Collapse
Affiliation(s)
- Lina Mattsson
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Eva Sörenson
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Hanna Maria Farnelid
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Maurice Hirwa
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Axis Communications, Lund, Sweden
| | | | - Fredrik Svensson
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Elin Lindehoff
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|