1
|
Xu X, Luo Q, Zhang N, Wu Y, Wei Q, Huang Z, Dong C. Sandy loam soil maintains better physicochemical parameters and more abundant beneficial microbiomes than clay soil in Stevia rebaudiana cultivation. PeerJ 2024; 12:e18010. [PMID: 39308829 PMCID: PMC11416757 DOI: 10.7717/peerj.18010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Depending on the texture of soil, different physicochemical and microbiological parameters are characterized, and these characteristics are influenced by crop cultivation. Stevia, a popular zero-calorie sweetener crop, is widely cultivated around the world on various soil textures. Sandy loam and clay soil show great differences in physicochemical and biological parameters and are often used for Stevia cultivation. To understand the effects of Stevia cultivation on soil physicochemical and biological features, we investigated the changes of physicochemical and microbiological parameters in sandy loam and clay soil following Stevia cultivation. This study was carried out through different physiological and biochemical assays and microbiomic analysis. The results indicated that the sandy loam soil had significantly lower pH and higher nutrient content in the rhizosphere and bulk soils after the Stevia cultivation. The sandy loam soil maintained higher bacterial diversity and richness than the clay soil after Stevia harvest. Beneficial bacteria such as Dongia, SWB02, Chryseolinea, Bryobacter and Devosia were enriched in the sandy loam soil; however, bacteria such as RB41, Haliangium and Ramlibacter, which are unfavorable for nutrient accumulation, predominated in clay soil. Redundancy analysis indicated that the variation in the composition of bacterial community was mainly driven by soil pH, organic matter, total nitrogen, available phosphorus, and microbial biomass phosphorus. This study provides a deeper understanding of physicochemical and microbiological changes in different soil textures after Stevia cultivation and guidance on fertilizer management for Stevia rotational cultivation.
Collapse
Affiliation(s)
- Xinjuan Xu
- Henan Institute of Science and Technology, School of Agriculture, Collaborative Innovation Center of Modern Biological Breeding, China
| | - Qingyun Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ningnan Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yingxia Wu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, School of Agriculture, Collaborative Innovation Center of Modern Biological Breeding, China
| | - Caixia Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
3
|
Hauschild K, Orth N, Liu B, Giongo A, Gschwendtner S, Beerhues L, Schloter M, Vetterlein D, Winkelmann T, Smalla K. Rhizosphere competent inoculants modulate the apple root-associated microbiome and plant phytoalexins. Appl Microbiol Biotechnol 2024; 108:344. [PMID: 38801472 PMCID: PMC11129989 DOI: 10.1007/s00253-024-13181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal β-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: • Rhizosphere competent inoculants modulated the microbiome (mainly fungi) • Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane • Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.
Collapse
Affiliation(s)
- Kristin Hauschild
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Nils Orth
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Adriana Giongo
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Silvia Gschwendtner
- Research Unit Comparative Microbiome Analysis, Helmholtz Centre Munich, Munich, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Centre Munich, Munich, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research, Halle/Saale, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany.
| |
Collapse
|
4
|
Quattrone A, Lopez-Guerrero M, Yadav P, Meier MA, Russo SE, Weber KA. Interactions between root hairs and the soil microbial community affect the growth of maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:611-628. [PMID: 37974552 DOI: 10.1111/pce.14755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are considered important for rhizosphere formation, which affects root system functioning. Through interactions with soil microorganisms mediated by root exudation, root hairs may affect the phenotypes and growth of young plants. We tested this hypothesis by integrating results from two experiments: (1) a factorial greenhouse seedling experiment with Zea mays B73-wt and its root-hairless mutant, B73-rth3, grown in live and autoclaved soil, quantifying 15 phenotypic traits, seven growth rates, and soil microbiomes and (2) a semi-hydroponic system quantifying root exudation of maize genotypes. Possibly as compensation for lacking root hairs, B73-rth3 seedlings allocated more biomass to roots and grew slower than B73-wt seedlings in live soil, whereas B73-wt seedlings grew slowest in autoclaved soil, suggesting root hairs can be costly and their benefits were realized with more complete soil microbial assemblages. There were substantial differences in root exudation between genotypes and in rhizosphere versus non-rhizosphere microbiomes. The microbial taxa enriched in the presence of root hairs generally enhanced growth compared to taxa enriched in their absence. Our findings suggest the root hairs' adaptive value extends to plant-microbe interactions mediated by root exudates, affecting plant phenotypes, and ultimately, growth.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. program, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Meier
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Rancho Biosciences, San Diego, California, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Karrie A Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
5
|
Lynch JP, Galindo-Castañeda T, Schneider HM, Sidhu JS, Rangarajan H, York LM. Root phenotypes for improved nitrogen capture. PLANT AND SOIL 2023; 502:31-85. [PMID: 39323575 PMCID: PMC11420291 DOI: 10.1007/s11104-023-06301-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2024]
Abstract
Background Suboptimal nitrogen availability is a primary constraint for crop production in low-input agroecosystems, while nitrogen fertilization is a primary contributor to the energy, economic, and environmental costs of crop production in high-input agroecosystems. In this article we consider avenues to develop crops with improved nitrogen capture and reduced requirement for nitrogen fertilizer. Scope Intraspecific variation for an array of root phenotypes has been associated with improved nitrogen capture in cereal crops, including architectural phenotypes that colocalize root foraging with nitrogen availability in the soil; anatomical phenotypes that reduce the metabolic costs of soil exploration, improve penetration of hard soil, and exploit the rhizosphere; subcellular phenotypes that reduce the nitrogen requirement of plant tissue; molecular phenotypes exhibiting optimized nitrate uptake kinetics; and rhizosphere phenotypes that optimize associations with the rhizosphere microbiome. For each of these topics we provide examples of root phenotypes which merit attention as potential selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of soil hydrology and impedance, phenotypic plasticity, integrated phenotypes, in silico modeling, and breeding strategies using high throughput phenotyping for co-optimization of multiple phenes. Conclusions Substantial phenotypic variation exists in crop germplasm for an array of root phenotypes that improve nitrogen capture. Although this topic merits greater research attention than it currently receives, we have adequate understanding and tools to develop crops with improved nitrogen capture. Root phenotypes are underutilized yet attractive breeding targets for the development of the nitrogen efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - Hannah M Schneider
- Department of Plant Sciences, Wageningen University and Research, PO Box 430, 6700AK Wageningen, The Netherlands
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
6
|
Su J, Wang Y, Bai M, Peng T, Li H, Xu HJ, Guo G, Bai H, Rong N, Sahu SK, He H, Liang X, Jin C, Liu W, Strube ML, Gram L, Li Y, Wang E, Liu H, Wu H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. MICROBIOME 2023; 11:61. [PMID: 36973820 PMCID: PMC10044787 DOI: 10.1186/s40168-023-01504-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The medicinal material quality of Citrus reticulata 'Chachi' differs depending on the bioactive components influenced by the planting area. Environmental factors, such as soil nutrients, the plant-associated microbiome and climatic conditions, play important roles in the accumulation of bioactive components in citrus. However, how these environmental factors mediate the production of bioactive components of medicinal plants remains understudied. RESULTS Here, a multi-omics approach was used to clarify the role of environmental factors such as soil nutrients and the root-associated microbiome on the accumulation of monoterpenes in the peel of C. reticulata 'Chachi' procured from core (geo-authentic product region) and non-core (non-geo-authentic product region) geographical regions. The soil environment (high salinity, Mg, Mn and K) enhanced the monoterpene content by promoting the expression of salt stress-responsive genes and terpene backbone synthase in the host plants from the core region. The microbial effects on the monoterpene accumulation of citrus from the core region were further verified by synthetic community (SynCom) experiments. Rhizosphere microorganisms activated terpene synthesis and promoted monoterpene accumulation through interactions with the host immune system. Endophyte microorganisms derived from soil with the potential for terpene synthesis might enhance monoterpene accumulation in citrus by providing precursors of monoterpenes. CONCLUSIONS Overall, this study demonstrated that both soil properties and the soil microbiome impacted monoterpene production in citrus peel, thus providing an essential basis for increasing fruit quality via reasonable fertilization and precision microbiota management. Video Abstract.
Collapse
Affiliation(s)
- Jianmu Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tianhua Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huisi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hui-Juan Xu
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guifang Guo
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyi Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Rong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Yongtao Li
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Response of root endosphere bacterial communities of typical rice cultivars to nitrogen fertilizer reduction at the jointing stage. Arch Microbiol 2022; 204:722. [DOI: 10.1007/s00203-022-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
|
8
|
Gebauer L, Breitkreuz C, Heintz-Buschart A, Reitz T, Buscot F, Tarkka M, Bouffaud ML. Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Front Microbiol 2022; 13:824437. [PMID: 35770171 PMCID: PMC9234553 DOI: 10.3389/fmicb.2022.824437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS+) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions.
Collapse
Affiliation(s)
- Lucie Gebauer
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Reitz
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Marie-Lara Bouffaud
- Helmholtz Centre for Environmental Research, Halle, Germany
- *Correspondence: Marie-Lara Bouffaud
| |
Collapse
|
9
|
Galindo-Castañeda T, Lynch JP, Six J, Hartmann M. Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms. FRONTIERS IN PLANT SCIENCE 2022; 13:827369. [PMID: 35356114 PMCID: PMC8959776 DOI: 10.3389/fpls.2022.827369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 05/14/2023]
Abstract
Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Collapse
Affiliation(s)
- Tania Galindo-Castañeda
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Johan Six
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
11
|
Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. Back to our roots: exploring the role of root morphology as a mediator of beneficial plant-microbe interactions. Environ Microbiol 2022; 24:3264-3272. [PMID: 35106901 PMCID: PMC9543362 DOI: 10.1111/1462-2920.15926] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Plant breeding for belowground traits that have a positive impact on the rhizosphere microbiome is a promising strategy to sustainably improve crop yields. Root architecture and morphology are understudied plant breeding targets despite their potential to significantly shape microbial community structure and function in the rhizosphere. In this review, we explore the relationship between various root architectural and morphological traits and rhizosphere interactions, focusing on the potential of root diameter to impact the rhizosphere microbiome structure and function while discussing the potential biological and ecological mechanisms underpinning this process. In addition, we propose three future research avenues to drive this research area in an effort to unravel the effect of belowground traits on rhizosphere microbiology. This knowledge will pave the way for new plant breeding strategies that can be exploited for sustainable and high‐yielding crop cultivars.
Collapse
Affiliation(s)
- Courtney Horn Herms
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Rosanna Catherine Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Frederik Bak
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Dorte Bodin Dresbøll
- Section for Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 30, Taastrup, 2630, Denmark
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
12
|
Breitkreuz C, Reitz T, Schulz E, Tarkka MT. Drought and Plant Community Composition Affect the Metabolic and Genotypic Diversity of Pseudomonas Strains in Grassland Soils. Microorganisms 2021; 9:microorganisms9081677. [PMID: 34442756 PMCID: PMC8399733 DOI: 10.3390/microorganisms9081677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Climate and plant community composition (PCC) modulate the structure and function of microbial communities. In order to characterize how the functional traits of bacteria are affected, important plant growth-promoting rhizobacteria of grassland soil communities, pseudomonads, were isolated from a grassland experiment and phylogenetically and functionally characterized. The Miniplot experiment was implemented to examine the mechanisms underlying grassland ecosystem changes due to climate change, and it investigates the sole or combined impact of drought and PCC (plant species with their main distribution either in SW or NE Europe, and a mixture of these species). We observed that the proportion and phylogenetic composition of nutrient-releasing populations of the Pseudomonas community are affected by prolonged drought periods, and to a minor extent by changes in plant community composition, and that these changes underlie seasonality effects. Our data also partly showed concordance between the metabolic activities and 16S phylogeny. The drought-induced shifts in functional Pseudomonas community traits, phosphate and potassium solubilization and siderophore production did not follow a unique pattern. Whereas decreased soil moisture induced a highly active phosphate-solubilizing community, the siderophore-producing community showed the opposite response. In spite of this, no effect on potassium solubilization was detected. These results suggest that the Pseudomonas community quickly responds to drought in terms of structure and function, the direction of the functional response is trait-specific, and the extent of the response is affected by plant community composition.
Collapse
Affiliation(s)
- Claudia Breitkreuz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- Correspondence: ; Tel.: +49-345-558-5416
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Elke Schulz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
| | - Mika Tapio Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Aallam Y, Maliki BE, Dhiba D, Lemriss S, Souiri A, Haddioui A, Tarkka M, Hamdali H. Multiple Potential Plant Growth Promotion Activities of Endemic Streptomyces spp. from Moroccan Sugar Beet Fields with Their Inhibitory Activities against Fusarium spp. Microorganisms 2021; 9:microorganisms9071429. [PMID: 34361865 PMCID: PMC8303843 DOI: 10.3390/microorganisms9071429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
The characterized 10 Streptomyces isolates were previously selected by their abilities to solubilize phosphates. To investigate whether these isolates represent multifaceted plant growth-promoting rhizobacteria (PGPR), their potassium-solubilizing, auxin-producing and inhibitory activities were determined. The 10 Streptomyces spp. yielded a variable biomass in the presence of insoluble orthoclase as the sole potassium (K) source, indicating that they were able to extract different amounts of K from this source for their own growth. Three strains (AZ, AYD and DE2) released soluble K from insoluble orthoclase in large amounts into the culture broth. The production levels ranged from 125.4 mg/L to 216.6 mg/L after 5 days of culture. Only two strains, Streptomyces enissocaesilis (BYC) and S. tunisiensis (AI), released a larger amount of soluble K from orthoclase and yielded much more biomass. This indicated that the rate of K released from this insoluble orthoclase exceeded its consumption rate for bacterial growth and that some strains solubilized K more efficiently than others. The results also suggest that the K solubilization process of AZ, AYD and DE2 strains, the most efficient K-solubilizing strains, involves a slight acidification of the medium. Furthermore, these 10 Streptomyces spp. were able to secrete indole acetic acid (IAA) in broth medium and ranged from 7.9 ± 0.1 µg/mL to 122.3 ± 0.1 µg/mL. The results of the antibiosis test proved the potential of the 10 tested strains to limit the growth of fungi and bacteria. In dual culture, S. bellus (AYD) had highest inhibitory effect against the three identified fungal causal agents of root rot of sugar beet: Fusarium equiseti and two F. fujikuroi at 55, 43 and 36%, respectively. Streptomyces enissocaesilis (BYC), S. bellus (AYD) and S. saprophyticus (DE2) exhibited higher multifaceted PGPR with their potassium-solubilizing, auxin-producing and inhibitory activities, which could be expected to lead to effectiveness in field trials of sugar beet.
Collapse
Affiliation(s)
- Yassine Aallam
- Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Technology, University of Sultan Moulay Slimane, P.O. 523, Beni-Mellal 23000, Morocco; (Y.A.); (S.L.); (A.H.)
| | - Bouchra El Maliki
- Faculty of Medecine and Pharmacy, University Hassan II, Casablanca 20250, Morocco;
| | - Driss Dhiba
- International Water Research Institute (IWRI), Moulay Rachid, University Mohammed 6 Polytechnic (UM6P), Ben Guerir 43150, Morocco;
| | - Sanaa Lemriss
- Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Technology, University of Sultan Moulay Slimane, P.O. 523, Beni-Mellal 23000, Morocco; (Y.A.); (S.L.); (A.H.)
- Laboratory of Research and Medical Analysis of Gendarmerie Royale, Department of Biosafety PCL3, Rabat 10090, Morocco;
| | - Amal Souiri
- Laboratory of Research and Medical Analysis of Gendarmerie Royale, Department of Biosafety PCL3, Rabat 10090, Morocco;
| | - Abdelmajid Haddioui
- Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Technology, University of Sultan Moulay Slimane, P.O. 523, Beni-Mellal 23000, Morocco; (Y.A.); (S.L.); (A.H.)
| | - Mika Tarkka
- UFZ—Helmholtz-Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle, Germany;
| | - Hanane Hamdali
- Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Technology, University of Sultan Moulay Slimane, P.O. 523, Beni-Mellal 23000, Morocco; (Y.A.); (S.L.); (A.H.)
- Correspondence: ; Tel.: +212-523485112; Fax: +212-523485201
| |
Collapse
|