1
|
Li W, Xie L, Zhou Y, Ji X, Wang H, Pang L, Liang F, Cheng G, Zhang J. Compositional Shifts in the Mycobiota of 'Shine Muscat' Grape ( Vitis labruscana Baily × V. vinifera L.) Bunches During Cold Storage at Different Temperatures. Foods 2025; 14:1169. [PMID: 40238311 PMCID: PMC11988345 DOI: 10.3390/foods14071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The cultivation of 'Shine Muscat' grapes is rapidly expanding in East Asia due to their desirable qualities and muscat flavor. Studies have revealed that storing these grapes at an controlled freezing-point temperature diminishes their muscat flavor, whereas storage at 10 °C preserves it. However, the impact of a higher storage temperature on the evolution of microbial communities remains unclear. This study aimed to analyze the mycobiota dynamics of 'Shine Muscat' grape bunches under different cold storage temperatures. A total of 1,892,842 and 1,643,200 sequences were obtained from berries and pedicels, identifying over 208 fungal genera from 6 phyla. Xylariaceae was the most abundant family, with a prevalence between 7.21% and 69.27% across all sample groups. The primary genera included Zygosporium, Cladosporium, Aspergillus, Acremonium, Podosordaria, Zasmidium, Penicillium, and Alternaria. Spoilage-related fungi varied with storage temperature, with Aspergillus, Penicillium, and Alternaria being dominant at 0 °C and Cladosporium, Aspergillus, Penicillium, and Alternaria being prevalent at 10 °C. The fungal profiles of berries and pedicels differed significantly, and storage temperature further influenced these variations. Our findings highlight distinct fungal diversity and spoilage patterns in 'Shine Muscat' grape bunches from the Nanning region compared to those grown in temperate areas, revealing the unique microbial evolution of grape bunches stored at different temperatures in Nanning.
Collapse
Affiliation(s)
- Wei Li
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Linjun Xie
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Yongmei Zhou
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Xian Ji
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China;
- Key Laboratory of Storage of Agricultural Products of the Ministry of Agriculture and Rural Affairs, Tianjin 300384, China
| | - Haijun Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Liting Pang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Feicui Liang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Guo Cheng
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jin Zhang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
2
|
Cui P, Li J, Yao T, Gan Z. Fungal community composition and function in different Chinese post-fermented teas. Sci Rep 2025; 15:8514. [PMID: 40074817 PMCID: PMC11903669 DOI: 10.1038/s41598-025-93420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Chinese post-fermented teas are produced through special fermentation by microorganisms, with fungi significantly contributing to their flavor and sensory characteristics. Here, the fungal community structure and function were investigated using Illumina HiSeq sequencing of the fungal ITS rDNA region across different post-fermented teas, including Fuzhuan, Qingzhuan, Tianjian black, Liupao, and raw and ripened Pu-erh. Additionally, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology was used to compare the volatile components of tea samples, and moisture content, pH, total nitrogen, carbon-nitrogen ratio, and total sulfur were measured. All the tea samples were slightly acidic, with pH values of 5.56-6.43, and Ascomycota was the most dominant phylum, representing over 90% of the relative abundance. However, there were significant differences at the genus level in the six typical post-fermented teas. Aspergillus was the most dominant genus in Fuzhuan (91.16%), Qingzhuan (54.89%), Tianjian (64.11%), and Liupao (47.43%) teas, whereas Debaryomyces and Blastobotrys were the most dominant genera in raw (35.67%) and ripened (78.88%) Pu-erh tea, respectively. A functional prediction analysis revealed that most fungal gene functions were involved in metabolism. A total of 26 main volatile components were detected, which differed in composition among six tea samples. This is the first comparative analysis of fungal communities and volatile components in different typical Chinese post-fermented teas, and the results will aid the design of better culturing strategies for the specific dominant fungal species and the influence of fungi on aroma types of post-fermented teas.
Collapse
Affiliation(s)
- Pu Cui
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Jia Li
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Ting Yao
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Zhuoting Gan
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China.
- School of Tourism, Huangshan University, Huangshan, Anhui, China.
| |
Collapse
|
3
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
4
|
Jiang P, Wang X, Wang R. Improving grape fruit quality through soil conditioner: Insights from RNA-seq analysis of Cabernet Sauvignon roots. Open Life Sci 2024; 19:20220864. [PMID: 38737104 PMCID: PMC11087741 DOI: 10.1515/biol-2022-0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
The application of fertilizers and soil quality are crucial for grape fruit quality. However, the molecular data linking different fertilizer (or soil conditioner [SC]) treatments with grape fruit quality is still lacking. In this study, we investigated three soil treatments, namely inorganic fertilizer (NPK, 343.5 kg/hm2 urea [N ≥ 46%]; 166.5 kg/hm2 P2O5 [P2O5 ≥ 64%]; 318 kg/hm2 K2O [K2O ≥ 50%]), organic fertilizer (Org, 9 t/hm2 [organic matter content ≥ 35%, N + P2O5 + K2O ≥ 13%]), and SC (SC, 3 t/hm2 [humic acid ≥ 38.5%; C, 56.1%; H, 3.7%; N, 1.5%; O, 38%; S, 0.6%]), on 4-year-old Cabernet Sauvignon grapevines. Compared with the NPK- and Org-treated groups, the SC significantly improved the levels of soluble solids, tannins, anthocyanins, and total phenols in the grape berries, which are important biochemical indicators that affect wine quality. Furthermore, we conducted RNA-seq analysis on the grapevine roots from each of the three treatments and used weighted gene co-expression network analysis to identify five hub genes that were associated with the biochemical indicators of the grape berries. Furthermore, we validated the expression levels of three hub genes (ERF, JP, and SF3B) and five selected genes related to anthocyanin biosynthesis (UFGT1, UFGT2, UFGT3, GST, and AT) by using quantitative reverse transcription-polymerase chain reaction. Compared to the NPK and Org treatment groups, the SC treatment resulted in a significant increase in the transcription levels of three hub genes as well as VvUFGT1, VvUFGT3, VvGST, and VvAT. These results suggest that the SC can improve grape fruit quality by altering gene transcription patterns in grapevine roots and further influence the biochemical indices of grape fruits, particularly anthocyanin content. This study reveals that the application of SC can serve as an important measure for enhancing vineyard SC and elevating grape quality.
Collapse
Affiliation(s)
- Peng Jiang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
| | - Xiaojing Wang
- Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products, Yinchuan750001, P.R. China
| | - Rui Wang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
- Ningxia Grape and Wine Research Institute, Yinchuan750021, P.R. China
| |
Collapse
|
5
|
Mu G, Xu L, Zhang J. Study of the utilization of main crop straw resources in Southern China and its potential as a replacement for chemical fertilizers. FRONTIERS IN PLANT SCIENCE 2024; 14:1172689. [PMID: 38250439 PMCID: PMC10796737 DOI: 10.3389/fpls.2023.1172689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024]
Abstract
Although straw returning to the field (SRTTF) is conducive to promoting sustainable agricultural production and protecting the environment, straw resources are still wasted due to the lack of suitable straw-returning technology in southern China. Based on the statistical yearbook and a large number of studies, different methods were used to calculate the total straw resources and SRTTF potential, and differences in these methods were compared. The results indicate that the total amount of straw resources in southern China in 2021 was 3.35×108 t. The nutrient content of K2O in the straw accounted for the highest proportion of total nutrient resources (63.66%), followed by N (26.88%) and P2O5 (9.46%). In theory, total SRTTF could replace almost all K2O and part of N and P2O5, indicating that the nutrient substitution potential of SRTTF was high. It is suggested that the SRTTF method be adopted in the middle and lower reaches of the Yangtze River, which mainly uses direct returning (DR) supplemented by indirect returning (IDR). In southeast China, straw returning is carried out by the combination of IDR and IR. In southwest China, straw returning is mainly carried out by IR and supplemented by MDR. This study will provide theoretical support for the government to formulate straw-returning policy.
Collapse
Affiliation(s)
- Guiting Mu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Lifu Xu
- Guizhou Provincial Forest Resources and Environment Research Center, Guizhou University, Guiyang, China
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| |
Collapse
|
6
|
What Influences Home Gardeners’ Food Waste Composting Intention in High-Rise Buildings in Dhaka Megacity, Bangladesh? An Integrated Model of TPB and DMP. SUSTAINABILITY 2022. [DOI: 10.3390/su14159400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Composting is a sustainable way of transforming organic waste into valuable organic fertilizers which have the potential to act as soil conditioners by controlling various biological processes. The prime objective of the current study was to determine the influencing factors behind the intent of home food waste composting, by employing the combined model of Theory of Planned Behavior (TPB) and Dualistic Passion Model (DMP). The combined model showed a higher predictive ability in comparison to the individual TPB model. The fit statistic of the integrated model was deemed good, and 65% of the variance for home composting intention was explained. Using a face-to-face questionnaire survey, a total of 203 valid responses were gathered from home gardeners and tested via a unique two-step methodology: the PLS-SEM and the artificial neural network (ANN). The results revealed that the composting intention can be significantly influenced by attitude, subjective norms, and perceived behavioral control. The study also confirmed the positive effect of harmonious passion and the negative effect of obsessive passion on the intention of food waste composting. Furthermore, the hybrid method produced more reliable results because HP was found to be the most important variable in both ANN and PLS-SEM results, while PBC was observed to be the second most important variable in ANN and the fourth most important in PLS-SEM. The results of the current study not only highlight the importance of passion in determining food waste composting intention in Dhaka, Bangladesh, but also provide helpful information for designing effective, sustainable tactics for encouraging residents to compost food waste at home.
Collapse
|
7
|
Jin N, Jin L, Wang S, Li J, Liu F, Liu Z, Luo S, Wu Y, Lyu J, Yu J. Reduced Chemical Fertilizer Combined With Bio-Organic Fertilizer Affects the Soil Microbial Community and Yield and Quality of Lettuce. Front Microbiol 2022; 13:863325. [PMID: 35531292 PMCID: PMC9069001 DOI: 10.3389/fmicb.2022.863325] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reducing chemical fertilizers in combination with bio-organic fertilizers can limit the use of chemical fertilizers while maintaining soil fertility. However, the effects of combined fertilization on soil chemical properties, microbial community structure, and crop yield and quality are unknown. Using high-throughput sequencing, we conducted field experiments using lettuce plants subjected to five fertilization treatments: chemical fertilizer with conventional fertilization rate (CK), chemical fertilizer reduction by 30% + 6,000 kg ha–1 bio-organic fertilizer (T1), chemical fertilizer reduction by 30% + 9,000 kg ha–1 bio-organic fertilizer (T2), chemical fertilizer reduction by 40% + 6,000 kg ha–1 bio-organic fertilizer (T3), and chemical fertilizer reduction by 40% + 9,000 kg ha–1 bio-organic fertilizer (T4). Compared with CK, the T1–T4 had significantly higher soil pH and soil organic matter (SOM) and showed increased richness and diversity of the bacterial community, and decreased richness and diversity of the fungal community. Principal coordinate analysis evidenced that the bacterial and fungal communities of CK and T1–T4 were distinctly separated. The Kruskal-Wallis H-test demonstrated that the fungal community was more sensitive than the bacterial community to chemical fertilizer reduction combined with bio-organic fertilizer. Among the soil chemical parameters measured, only TN (total nitrogen) was significantly correlated with bacterial and fungal community composition. The T1 and T2 increased lettuce yield. Moreover, T1–T4 characterized reduced nitrate content and increased levels of soluble sugars and vitamin C in lettuce. Overall, the combined application of reduced chemical fertilizer and bio-organic fertilizer effectively improved soil fertility, microbial community structure, and lettuce yield and quality. These findings have valuable implications for vegetable safety and long-term environmental sustainability.
Collapse
Affiliation(s)
- Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jinwu Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Fanhong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilie Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jian Lyu,
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- Jihua Yu,
| |
Collapse
|
8
|
Diversity and dynamics of microbial ecosystem on berry surface during the ripening of Ecolly (Vitis vinifera L.) grape in Wuhai, China. World J Microbiol Biotechnol 2021; 37:214. [PMID: 34746990 DOI: 10.1007/s11274-021-03170-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
The structural and functional diversities of the microbial ecosystem on the grape surface affect the health of berries and the flavor of wines, which are also changed by many factors such as climate, weather conditions, agronomic practices, and physiological development. To understand and explore the natural characteristics of the grape surface microbial ecosystem during ripening, the species composition and dynamics of fungal and bacterial communities on the skin of Ecolly grape were determined by Illumina Novaseq platform sequencing. The results showed that 2146 fungal OTUs and 4175 bacterial OTUs were obtained, belonging to four fungal phyla and 20 bacterial phyla. The Shannon index indicated that the fungal community had the highest species diversity at the véraison stage and the bacterial community at the harvest stage. The four dominant fungal genera during grape ripening were Alternaria, Naganishia, Filobasidium, and Aureobasidium, which accounted for 82.8% of the total fungal community, and the dominant bacterial genera included Sphingomonas, Brevundimonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Massilia, which accounted for 77.9% of the total bacterial community. The species richness and diversity in the grape microbial ecosystem changed constantly during the maturation stages, and there were strong correlations between certain core microbial genera, which may have an important impact on the function and ecological role of the community. This study provides a basis for understanding the natural characteristics of the microbial ecosystem on the grape surface during grape ripening, as well as the sustainable production concept of the microecology driving the viticulture management system.
Collapse
|